Zeta functions and counting finite p-groups
Electronic research announcements of the American Mathematical Society, Tome 05 (1999), pp. 112-122.

Voir la notice de l'article provenant de la source American Mathematical Society

We announce proofs of a number of theorems concerning finite $p$-groups and nilpotent groups. These include: (1) the number of $p$-groups of class $c$ on $d$ generators of order $p^n$ satisfies a linear recurrence relation in $n$; (2) for fixed $n$ the number of $p$-groups of order $p^n$ as one varies $p$ is given by counting points on certain varieties mod $p$; (3) an asymptotic formula for the number of finite nilpotent groups of order $n$; (4) the periodicity of trees associated to finite $p$-groups of a fixed coclass (Conjecture P of Newman and O’Brien). The second result offers a new approach to Higman’s PORC conjecture. The results are established using zeta functions associated to infinite groups and the concept of definable $p$-adic integrals.
DOI : 10.1090/S1079-6762-99-00069-4

du Sautoy, Marcus 1

1 DPMMS, 16 Mill Lane, Cambridge CB2 1SB, UK
@article{ERAAMS_1999_05_a15,
     author = {du Sautoy, Marcus},
     title = {Zeta functions and counting finite p-groups},
     journal = {Electronic research announcements of the American Mathematical Society},
     pages = {112--122},
     publisher = {mathdoc},
     volume = {05},
     year = {1999},
     doi = {10.1090/S1079-6762-99-00069-4},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-99-00069-4/}
}
TY  - JOUR
AU  - du Sautoy, Marcus
TI  - Zeta functions and counting finite p-groups
JO  - Electronic research announcements of the American Mathematical Society
PY  - 1999
SP  - 112
EP  - 122
VL  - 05
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-99-00069-4/
DO  - 10.1090/S1079-6762-99-00069-4
ID  - ERAAMS_1999_05_a15
ER  - 
%0 Journal Article
%A du Sautoy, Marcus
%T Zeta functions and counting finite p-groups
%J Electronic research announcements of the American Mathematical Society
%D 1999
%P 112-122
%V 05
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-99-00069-4/
%R 10.1090/S1079-6762-99-00069-4
%F ERAAMS_1999_05_a15
du Sautoy, Marcus. Zeta functions and counting finite p-groups. Electronic research announcements of the American Mathematical Society, Tome 05 (1999), pp. 112-122. doi : 10.1090/S1079-6762-99-00069-4. http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-99-00069-4/

[1] Denef, J. The rationality of the Poincaré series associated to the 𝑝-adic points on a variety Invent. Math. 1984 1 23

[2] Denef, J., Van Den Dries, L. 𝑝-adic and real subanalytic sets Ann. of Math. (2) 1988 79 138

[3] Denef, Jan, Loeser, François Motivic Igusa zeta functions J. Algebraic Geom. 1998 505 537

[4] Du Sautoy, Marcus P. F. Finitely generated groups, 𝑝-adic analytic groups and Poincaré series Ann. of Math. (2) 1993 639 670

[5] Grunewald, F. J., Segal, D., Smith, G. C. Subgroups of finite index in nilpotent groups Invent. Math. 1988 185 223

[6] Higman, Graham Enumerating 𝑝-groups. I. Inequalities Proc. London Math. Soc. (3) 1960 24 30

[7] Higman, Graham Enumerating 𝑝-groups. II. Problems whose solution is PORC Proc. London Math. Soc. (3) 1960 566 582

[8] Leedham-Green, C. R. The structure of finite 𝑝-groups J. London Math. Soc. (2) 1994 49 67

[9] Newman, M. F., O’Brien, E. A. Classifying 2-groups by coclass Trans. Amer. Math. Soc. 1999 131 169

[10] Leedham-Green, C. R. The structure of finite 𝑝-groups J. London Math. Soc. (2) 1994 49 67

[11] Sims, Charles C. Enumerating 𝑝-groups Proc. London Math. Soc. (3) 1965 151 166

Cité par Sources :