A Pieri-Chevalley formula in the K-theory of a 𝐺/𝐵-bundle
Electronic research announcements of the American Mathematical Society, Tome 05 (1999), pp. 102-107
Cet article a éte moissonné depuis la source American Mathematical Society
Let $G$ be a semisimple complex Lie group, $B$ a Borel subgroup, and $T\subseteq B$ a maximal torus of $G$. The projective variety $G/B$ is a generalization of the classical flag variety. The structure sheaves of the Schubert subvarieties form a basis of the K-theory $K(G/B)$ and every character of $T$ gives rise to a line bundle on $G/B$. This note gives a formula for the product of a dominant line bundle and a Schubert class in $K(G/B)$. This result generalizes a formula of Chevalley which computes an analogous product in cohomology. The new formula applies to the relative case, the K-theory of a $G/B$-bundle over a smooth base $X$, and is presented in this generality. In this setting the new formula is a generalization of recent $G=GL_n({\mathbb C})$ results of Fulton and Lascoux.
Affiliations des auteurs :
Pittie, Harsh 1 ; Ram, Arun 2
@article{10_1090_S1079_6762_99_00067_0,
author = {Pittie, Harsh and Ram, Arun},
title = {A {Pieri-Chevalley} formula in the {K-theory} of a {\ensuremath{\mathit{G}}/\ensuremath{\mathit{B}}-bundle}},
journal = {Electronic research announcements of the American Mathematical Society},
pages = {102--107},
year = {1999},
volume = {05},
doi = {10.1090/S1079-6762-99-00067-0},
url = {http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-99-00067-0/}
}
TY - JOUR AU - Pittie, Harsh AU - Ram, Arun TI - A Pieri-Chevalley formula in the K-theory of a 𝐺/𝐵-bundle JO - Electronic research announcements of the American Mathematical Society PY - 1999 SP - 102 EP - 107 VL - 05 UR - http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-99-00067-0/ DO - 10.1090/S1079-6762-99-00067-0 ID - 10_1090_S1079_6762_99_00067_0 ER -
%0 Journal Article %A Pittie, Harsh %A Ram, Arun %T A Pieri-Chevalley formula in the K-theory of a 𝐺/𝐵-bundle %J Electronic research announcements of the American Mathematical Society %D 1999 %P 102-107 %V 05 %U http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-99-00067-0/ %R 10.1090/S1079-6762-99-00067-0 %F 10_1090_S1079_6762_99_00067_0
Pittie, Harsh; Ram, Arun. A Pieri-Chevalley formula in the K-theory of a 𝐺/𝐵-bundle. Electronic research announcements of the American Mathematical Society, Tome 05 (1999), pp. 102-107. doi: 10.1090/S1079-6762-99-00067-0
[1] Sur les décompositions cellulaires des espaces 𝐺/𝐵 1994 1 23
[2] , A Pieri formula in the Grothendieck ring of a flag bundle Duke Math. J. 1994 711 729
[3] , 𝑇-equivariant 𝐾-theory of generalized flag varieties J. Differential Geom. 1990 549 603
[4] A Littlewood-Richardson rule for symmetrizable Kac-Moody algebras Invent. Math. 1994 329 346
[5] Homogeneous vector bundles on homogeneous spaces Topology 1972 199 203
[6] On a theorem of Pittie Topology 1975 173 177
Cité par Sources :