The first eigenvalue of a Riemann surface
Electronic research announcements of the American Mathematical Society, Tome 05 (1999), pp. 76-81.

Voir la notice de l'article provenant de la source American Mathematical Society

We present a collection of results whose central theme is that the phenomenon of the first eigenvalue of the Laplacian being large is typical for Riemann surfaces. Our main analytic tool is a method for studying how the hyperbolic metric on a Riemann surface behaves under compactification of the surface. We make the notion of picking a Riemann surface at random by modeling this process on the process of picking a random $3$-regular graph. With this model, we show that there are positive constants $C_1$ and $C_2$ independent of the genus, such that with probability at least $C_1$, a randomly picked surface has first eigenvalue at least $C_2$.
DOI : 10.1090/S1079-6762-99-00064-5

Brooks, Robert 1 ; Makover, Eran 2, 3

1 Department of Mathematics, Technion—Israel Institute of Technology, Haifa, Israel
2 Department of Mathematics and Computer Science, Drake University, Des Moines, IA 50311
3 Department of Mathematics, Dartmouth College, Hanover, NH
@article{ERAAMS_1999_05_a10,
     author = {Brooks, Robert and Makover, Eran},
     title = {The first eigenvalue of a {Riemann} surface},
     journal = {Electronic research announcements of the American Mathematical Society},
     pages = {76--81},
     publisher = {mathdoc},
     volume = {05},
     year = {1999},
     doi = {10.1090/S1079-6762-99-00064-5},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-99-00064-5/}
}
TY  - JOUR
AU  - Brooks, Robert
AU  - Makover, Eran
TI  - The first eigenvalue of a Riemann surface
JO  - Electronic research announcements of the American Mathematical Society
PY  - 1999
SP  - 76
EP  - 81
VL  - 05
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-99-00064-5/
DO  - 10.1090/S1079-6762-99-00064-5
ID  - ERAAMS_1999_05_a10
ER  - 
%0 Journal Article
%A Brooks, Robert
%A Makover, Eran
%T The first eigenvalue of a Riemann surface
%J Electronic research announcements of the American Mathematical Society
%D 1999
%P 76-81
%V 05
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-99-00064-5/
%R 10.1090/S1079-6762-99-00064-5
%F ERAAMS_1999_05_a10
Brooks, Robert; Makover, Eran. The first eigenvalue of a Riemann surface. Electronic research announcements of the American Mathematical Society, Tome 05 (1999), pp. 76-81. doi : 10.1090/S1079-6762-99-00064-5. http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-99-00064-5/

[1] Belyĭ, G. V. Galois extensions of a maximal cyclotomic field Izv. Akad. Nauk SSSR Ser. Mat. 1979

[2] Bollobás, Béla Random graphs 1985

[3] Bollobás, Béla The isoperimetric number of random regular graphs European J. Combin. 1988 241 244

[4] Brooks, Robert The spectral geometry of a tower of coverings J. Differential Geom. 1986 97 107

[5] Brooks, Robert Some remarks on volume and diameter of Riemannian manifolds J. Differential Geom. 1988 81 86

[6] Buser, Peter Cubic graphs and the first eigenvalue of a Riemann surface Math. Z. 1978 87 99

[7] Buser, Peter On the bipartition of graphs Discrete Appl. Math. 1984 105 109

[8] Buser, Peter, Burger, Marc, Dodziuk, Jozef Riemann surfaces of large genus and large 𝜆₁ 1988 54 63

[9] Cheeger, Jeff A lower bound for the smallest eigenvalue of the Laplacian 1970 195 199

[10] Luo, W., Rudnick, Z., Sarnak, P. On Selberg’s eigenvalue conjecture Geom. Funct. Anal. 1995 387 401

[11] Selberg, Atle On the estimation of Fourier coefficients of modular forms 1965 1 15

[12] Thomassen, Carsten Bidirectional retracting-free double tracings and upper embeddability of graphs J. Combin. Theory Ser. B 1990 198 207

[13] Nguyen Huy Xuong Sur les immersions d’un graphe dans les surfaces orientables C. R. Acad. Sci. Paris Sér. A-B 1976

[14] Nguyen Huy Xuong Sur quelques classes de graphes possédant des propriétés topologiques remarquables C. R. Acad. Sci. Paris Sér. A-B 1976

Cité par Sources :