Voir la notice de l'article provenant de la source American Mathematical Society
Novikov, D. 1 ; Yakovenko, S. 2
@article{ERAAMS_1999_05_a7, author = {Novikov, D. and Yakovenko, S.}, title = {Tangential {Hilbert} problem for perturbations of hyperelliptic {Hamiltonian} systems}, journal = {Electronic research announcements of the American Mathematical Society}, pages = {55--65}, publisher = {mathdoc}, volume = {05}, year = {1999}, doi = {10.1090/S1079-6762-99-00061-X}, url = {http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-99-00061-X/} }
TY - JOUR AU - Novikov, D. AU - Yakovenko, S. TI - Tangential Hilbert problem for perturbations of hyperelliptic Hamiltonian systems JO - Electronic research announcements of the American Mathematical Society PY - 1999 SP - 55 EP - 65 VL - 05 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-99-00061-X/ DO - 10.1090/S1079-6762-99-00061-X ID - ERAAMS_1999_05_a7 ER -
%0 Journal Article %A Novikov, D. %A Yakovenko, S. %T Tangential Hilbert problem for perturbations of hyperelliptic Hamiltonian systems %J Electronic research announcements of the American Mathematical Society %D 1999 %P 55-65 %V 05 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-99-00061-X/ %R 10.1090/S1079-6762-99-00061-X %F ERAAMS_1999_05_a7
Novikov, D.; Yakovenko, S. Tangential Hilbert problem for perturbations of hyperelliptic Hamiltonian systems. Electronic research announcements of the American Mathematical Society, Tome 05 (1999), pp. 55-65. doi : 10.1090/S1079-6762-99-00061-X. http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-99-00061-X/
[1] Some unsolved problems in the theory of differential equations and mathematical physics Uspekhi Mat. Nauk 1989 191 202
, , , , , , , , , ,[2] Singularities of differentiable maps. Vol. II 1988
, ,[3] Sturm’s theorem for hyperelliptic integrals Algebra i Analiz 1989 95 102
[4] The multiplicity of limit cycles that arise in the perturbation of a Hamiltonian equation of the class 𝜔’ Trudy Sem. Petrovsk. 1978 49 60
[5] Double exponential estimate for the number of zeros of complete abelian integrals and rational envelopes of linear ordinary differential equations with an irreducible monodromy group Invent. Math. 1995 613 650
,[6] An introduction to differential algebra 1976 64
[7] Fewnomials 1991
[8] Real analytic manifolds with the property of finiteness, and complex abelian integrals Funktsional. Anal. i Prilozhen. 1984 40 50
[9] The complement of the bifurcation variety of a simple singularity Invent. Math. 1974 105 116
[10] A course in mathematical logic 1977
[11] An explicit bound for the multiplicity of zeros of generic Abelian integrals Nonlinearity 1991 845 852
[12] Simple exponential estimate for the number of real zeros of complete Abelian integrals Ann. Inst. Fourier (Grenoble) 1995 897 927
,[13] Meandering of trajectories of polynomial vector fields in the affine 𝑛-space Publ. Mat. 1997 223 242
,[14] Nonoscillation of elliptic integrals Funktsional. Anal. i Prilozhen. 1990
[15] Complex zeros of an elliptic integral Funktsional. Anal. i Prilozhen. 1987 87 88
[16] On the number of zeros of analytic functions in a neighborhood of a Fuchsian singular point with real spectrum Math. Res. Lett. 1996 359 371
,[17] On the number of limit cycles which appear by perturbation of separatrix loop of planar vector fields Bol. Soc. Brasil. Mat. 1986 67 101
[18] A class of Hamiltonian systems with increasing periods J. Reine Angew. Math. 1985 96 109
[19] Estimation of the number of zeros of an abelian integral depending on a parameter, and limit cycles Funktsional. Anal. i Prilozhen. 1984 14 25
[20] Complete abelian integrals as rational envelopes Nonlinearity 1994 1237 1250
Cité par Sources :