Tangential Hilbert problem for perturbations of hyperelliptic Hamiltonian systems
Electronic research announcements of the American Mathematical Society, Tome 05 (1999), pp. 55-65.

Voir la notice de l'article provenant de la source American Mathematical Society

The tangential Hilbert 16th problem is to place an upper bound for the number of isolated ovals of algebraic level curves $\{H(x,y)=\operatorname {const}\}$ over which the integral of a polynomial 1-form $P(x,y) dx+Q(x,y) dy$ (the Abelian integral) may vanish, the answer to be given in terms of the degrees $n=\deg H$ and $d=\max (\deg P,\deg Q)$. We describe an algorithm producing this upper bound in the form of a primitive recursive (in fact, elementary) function of $n$ and $d$ for the particular case of hyperelliptic polynomials $H(x,y)=y^2+U(x)$ under the additional assumption that all critical values of $U$ are real. This is the first general result on zeros of Abelian integrals that is completely constructive (i.e., contains no existential assertions of any kind). The paper is a research announcement preceding the forthcoming complete exposition. The main ingredients of the proof are explained and the differential algebraic generalization (that is the core result) is given.
DOI : 10.1090/S1079-6762-99-00061-X

Novikov, D. 1 ; Yakovenko, S. 2

1 Laboratoire de Topologie, Université de Bourgogne, Dijon, France
2 Department of Theoretical Mathematics, The Weizmann Institute of Science, Rehovot, Israel
@article{ERAAMS_1999_05_a7,
     author = {Novikov, D. and Yakovenko, S.},
     title = {Tangential {Hilbert} problem for perturbations of hyperelliptic {Hamiltonian} systems},
     journal = {Electronic research announcements of the American Mathematical Society},
     pages = {55--65},
     publisher = {mathdoc},
     volume = {05},
     year = {1999},
     doi = {10.1090/S1079-6762-99-00061-X},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-99-00061-X/}
}
TY  - JOUR
AU  - Novikov, D.
AU  - Yakovenko, S.
TI  - Tangential Hilbert problem for perturbations of hyperelliptic Hamiltonian systems
JO  - Electronic research announcements of the American Mathematical Society
PY  - 1999
SP  - 55
EP  - 65
VL  - 05
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-99-00061-X/
DO  - 10.1090/S1079-6762-99-00061-X
ID  - ERAAMS_1999_05_a7
ER  - 
%0 Journal Article
%A Novikov, D.
%A Yakovenko, S.
%T Tangential Hilbert problem for perturbations of hyperelliptic Hamiltonian systems
%J Electronic research announcements of the American Mathematical Society
%D 1999
%P 55-65
%V 05
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-99-00061-X/
%R 10.1090/S1079-6762-99-00061-X
%F ERAAMS_1999_05_a7
Novikov, D.; Yakovenko, S. Tangential Hilbert problem for perturbations of hyperelliptic Hamiltonian systems. Electronic research announcements of the American Mathematical Society, Tome 05 (1999), pp. 55-65. doi : 10.1090/S1079-6762-99-00061-X. http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-99-00061-X/

[1] Arnol′D, V. I., Vishik, M. I., Il′Yashenko, Yu. S., Kalashnikov, A. S., Kondrat′Ev, V. A., Kruzhkov, S. N., Landis, E. M., Millionshchikov, V. M., Oleĭnik, O. A., Filippov, A. F., Shubin, M. A. Some unsolved problems in the theory of differential equations and mathematical physics Uspekhi Mat. Nauk 1989 191 202

[2] Arnol′D, V. I., Guseĭn-Zade, S. M., Varchenko, A. N. Singularities of differentiable maps. Vol. II 1988

[3] Givental′, A. B. Sturm’s theorem for hyperelliptic integrals Algebra i Analiz 1989 95 102

[4] Il′Jašenko, Ju. S. The multiplicity of limit cycles that arise in the perturbation of a Hamiltonian equation of the class 𝜔’ Trudy Sem. Petrovsk. 1978 49 60

[5] Il′Yashenko, Yuliĭ, Yakovenko, Sergeĭ Double exponential estimate for the number of zeros of complete abelian integrals and rational envelopes of linear ordinary differential equations with an irreducible monodromy group Invent. Math. 1995 613 650

[6] Kaplansky, Irving An introduction to differential algebra 1976 64

[7] Khovanskiĭ, A. G. Fewnomials 1991

[8] Khovanskiĭ, A. G. Real analytic manifolds with the property of finiteness, and complex abelian integrals Funktsional. Anal. i Prilozhen. 1984 40 50

[9] Looijenga, Eduard The complement of the bifurcation variety of a simple singularity Invent. Math. 1974 105 116

[10] Manin, Yu. I. A course in mathematical logic 1977

[11] Mardešić, Pavao An explicit bound for the multiplicity of zeros of generic Abelian integrals Nonlinearity 1991 845 852

[12] Novikov, D., Yakovenko, S. Simple exponential estimate for the number of real zeros of complete Abelian integrals Ann. Inst. Fourier (Grenoble) 1995 897 927

[13] Novikov, D., Yakovenko, S. Meandering of trajectories of polynomial vector fields in the affine 𝑛-space Publ. Mat. 1997 223 242

[14] Petrov, G. S. Nonoscillation of elliptic integrals Funktsional. Anal. i Prilozhen. 1990

[15] Petrov, G. S. Complex zeros of an elliptic integral Funktsional. Anal. i Prilozhen. 1987 87 88

[16] Roitman, M., Yakovenko, S. On the number of zeros of analytic functions in a neighborhood of a Fuchsian singular point with real spectrum Math. Res. Lett. 1996 359 371

[17] Roussarie, R. On the number of limit cycles which appear by perturbation of separatrix loop of planar vector fields Bol. Soc. Brasil. Mat. 1986 67 101

[18] Schaaf, Renate A class of Hamiltonian systems with increasing periods J. Reine Angew. Math. 1985 96 109

[19] Varchenko, A. N. Estimation of the number of zeros of an abelian integral depending on a parameter, and limit cycles Funktsional. Anal. i Prilozhen. 1984 14 25

[20] Yakovenko, Sergeĭ Complete abelian integrals as rational envelopes Nonlinearity 1994 1237 1250

Cité par Sources :