Voir la notice de l'article provenant de la source American Mathematical Society
@article{10_1090_S1079_6762_99_00059_1, author = {Petrunin, Anton}, title = {Metric minimizing surfaces}, journal = {Electronic research announcements of the American Mathematical Society}, pages = {47--54}, publisher = {mathdoc}, volume = {05}, year = {1999}, doi = {10.1090/S1079-6762-99-00059-1}, url = {http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-99-00059-1/} }
TY - JOUR AU - Petrunin, Anton TI - Metric minimizing surfaces JO - Electronic research announcements of the American Mathematical Society PY - 1999 SP - 47 EP - 54 VL - 05 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-99-00059-1/ DO - 10.1090/S1079-6762-99-00059-1 ID - 10_1090_S1079_6762_99_00059_1 ER -
%0 Journal Article %A Petrunin, Anton %T Metric minimizing surfaces %J Electronic research announcements of the American Mathematical Society %D 1999 %P 47-54 %V 05 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-99-00059-1/ %R 10.1090/S1079-6762-99-00059-1 %F 10_1090_S1079_6762_99_00059_1
Petrunin, Anton. Metric minimizing surfaces. Electronic research announcements of the American Mathematical Society, Tome 05 (1999), pp. 47-54. doi: 10.1090/S1079-6762-99-00059-1
[1] Infinite number fields with Noether ideal theories Amer. J. Math. 1939 771 782
,[2] Structures métriques pour les variétés riemanniennes 1981
[3] The tangent cone of an Aleksandrov space of curvature â¤ð¾ Manuscripta Math. 1995 137 147
[4] Parallel transportation for Alexandrov space with curvature bounded below Geom. Funct. Anal. 1998 123 148
[5] Non-expansive maps in a space of curvature no greater than ð¾ Sibirsk. Mat. Ž. 1968 918 927
[6] Radius of injectivity of a complete open manifold of nonnegative curvature Dokl. Akad. Nauk SSSR 1976 46 48
[7] On saddle surfaces bounded by a rectifiable curve Dokl. Akad. Nauk SSSR 1965 294 296
[8] On the intrinsic geometry of saddle surfaces Sibirsk. Mat. Ž. 1964 1382 1396
Cité par Sources :