On quantum de Rham cohomology theory
Electronic research announcements of the American Mathematical Society, Tome 05 (1999), pp. 24-34.

Voir la notice de l'article provenant de la source American Mathematical Society

We define the quantum exterior product $\wedge _h$ and quantum exterior differential $d_h$ on Poisson manifolds. The quantum de Rham cohomology, which is a deformation quantization of the de Rham cohomology, is defined as the cohomology of $d_h$. We also define the quantum Dolbeault cohomology. A version of quantum integral on symplectic manifolds is considered and the corresponding quantum Stokes theorem is stated. We also derive the quantum hard Lefschetz theorem. By replacing $d$ by $d_h$ and $\wedge$ by $\wedge _h$ in the usual definitions, we define many quantum analogues of important objects in differential geometry, e.g. quantum curvature. The quantum characteristic classes are then studied along the lines of the classical Chern-Weil theory. The quantum equivariant de Rham cohomology is defined in the similar fashion.
DOI : 10.1090/S1079-6762-99-00056-6

Cao, Huai-Dong 1 ; Zhou, Jian 1

1 Department of Mathematics, Texas A&M University, College Station, TX 77843
@article{ERAAMS_1999_05_a3,
     author = {Cao, Huai-Dong and Zhou, Jian},
     title = {On quantum de {Rham} cohomology theory},
     journal = {Electronic research announcements of the American Mathematical Society},
     pages = {24--34},
     publisher = {mathdoc},
     volume = {05},
     year = {1999},
     doi = {10.1090/S1079-6762-99-00056-6},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-99-00056-6/}
}
TY  - JOUR
AU  - Cao, Huai-Dong
AU  - Zhou, Jian
TI  - On quantum de Rham cohomology theory
JO  - Electronic research announcements of the American Mathematical Society
PY  - 1999
SP  - 24
EP  - 34
VL  - 05
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-99-00056-6/
DO  - 10.1090/S1079-6762-99-00056-6
ID  - ERAAMS_1999_05_a3
ER  - 
%0 Journal Article
%A Cao, Huai-Dong
%A Zhou, Jian
%T On quantum de Rham cohomology theory
%J Electronic research announcements of the American Mathematical Society
%D 1999
%P 24-34
%V 05
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-99-00056-6/
%R 10.1090/S1079-6762-99-00056-6
%F ERAAMS_1999_05_a3
Cao, Huai-Dong; Zhou, Jian. On quantum de Rham cohomology theory. Electronic research announcements of the American Mathematical Society, Tome 05 (1999), pp. 24-34. doi : 10.1090/S1079-6762-99-00056-6. http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-99-00056-6/

[1] Bayen, F., Flato, M., Fronsdal, C., Lichnerowicz, A., Sternheimer, D. Deformation theory and quantization. I. Deformations of symplectic structures Ann. Physics 1978 61 110

[2] Bott, Raoul, Tu, Loring W. Differential forms in algebraic topology 1982

[3] Brylinski, Jean-Luc A differential complex for Poisson manifolds J. Differential Geom. 1988 93 114

[4] De Wilde, Marc, Lecomte, Pierre B. A. Existence of star-products and of formal deformations of the Poisson Lie algebra of arbitrary symplectic manifolds Lett. Math. Phys. 1983 487 496

[5] Fedosov, Boris V. A simple geometrical construction of deformation quantization J. Differential Geom. 1994 213 238

[6] Griffiths, Phillip, Harris, Joseph Principles of algebraic geometry 1978

[7] Koszul, Jean-Louis Crochet de Schouten-Nijenhuis et cohomologie Astérisque 1985 257 271

[8] Lawson, H. Blaine, Jr., Michelsohn, Marie-Louise Spin geometry 1989

[9] Mathieu, Olivier Harmonic cohomology classes of symplectic manifolds Comment. Math. Helv. 1995 1 9

[10] Tian, Gang Quantum cohomology and its associativity 1994 361 401

[11] Vafa, Cumrun Topological mirrors and quantum rings 1992 96 119

[12] Vaisman, Izu Lectures on the geometry of Poisson manifolds 1994

[13] Yan, Dong Hodge structure on symplectic manifolds Adv. Math. 1996 143 154

Cité par Sources :