On aspherical presentations of groups
Electronic research announcements of the American Mathematical Society, Tome 04 (1998), pp. 109-114.

Voir la notice de l'article provenant de la source American Mathematical Society

The Whitehead asphericity conjecture claims that if $\langle \mathcal {A} \| \mathcal {R} \rangle$ is an aspherical group presentation, then for every $\mathcal {S} \subset \mathcal {R}$ the subpresentation $\langle \mathcal {A} \| \mathcal {S} \rangle$ is also aspherical. This conjecture is generalized for presentations of groups with periodic elements by introduction of almost aspherical presentations. It is proven that the generalized Whitehead asphericity conjecture (which claims that every subpresentation of an almost aspherical presentation is also almost aspherical) is equivalent to the original Whitehead conjecture and holds for standard presentations of free Burnside groups of large odd exponent, Tarski monsters and some others. Next, it is proven that if the Whitehead conjecture is false, then there is an aspherical presentation $E = \langle \mathcal {A} \| \mathcal {R} \cup z \rangle$ of the trivial group $E$, where the alphabet $\mathcal {A}$ is finite or countably infinite and $z \in \mathcal {A}$, such that its subpresentation $\langle \mathcal {A} \| \mathcal {R} \rangle$ is not aspherical. It is also proven that if the Whitehead conjecture fails for finite presentations (i.e., with finite $\mathcal {A}$ and $\mathcal {R}$), then there is a finite aspherical presentation $\langle \mathcal {A} \| \mathcal {R} \rangle$, $\mathcal {R} = \{ R_{1}, R_{2}, \dots , R_{n} \}$, such that for every $\mathcal {S} \subseteq \mathcal {R}$ the subpresentation $\langle \mathcal {A} \| \mathcal {S} \rangle$ is aspherical and the subpresentation $\langle \mathcal {A} \| R_{1}R_{2}, R_{3}, \dots , R_{n} \rangle$ of aspherical $\langle \mathcal {A} \| R_{1}R_{2}, R_{2}, R_{3}, \dots , R_{n} \rangle$ is not aspherical. Now suppose a group presentation $H = \langle \mathcal {A} \| \mathcal {R} \rangle$ is aspherical, $x \not \in \mathcal {A}$, $W(\mathcal {A} \cup x)$ is a word in the alphabet $(\mathcal {A} \cup x)^{\pm 1}$ with nonzero sum of exponents on $x$, and the group $H$ naturally embeds in $G = \langle \mathcal {A} \cup x \| \mathcal {R} \cup W(\mathcal {A} \cup x) \rangle$. It is conjectured that the presentation $G = \langle \mathcal {A} \cup x \| \mathcal {R} \cup W(\mathcal {A} \cup x) \rangle$ is aspherical if and only if $G$ is torsion free. It is proven that if this conjecture is false and $G = \langle \mathcal {A} \cup x \| \mathcal {R} \cup W(\mathcal {A} \cup x) \rangle$ is a counterexample, then the integral group ring $\mathbb {Z}(G)$ of the torsion free group $G$ will contain zero divisors. Some special cases where this conjecture holds are also indicated.
DOI : 10.1090/S1079-6762-98-00052-3

Ivanov, Sergei 1

1 Department of Mathematics, University of Illinois at Urbana-Champaign, 1409 West Green Street, Urbana, IL 61801
@article{ERAAMS_1998_04_a14,
     author = {Ivanov, Sergei},
     title = {On aspherical presentations of groups},
     journal = {Electronic research announcements of the American Mathematical Society},
     pages = {109--114},
     publisher = {mathdoc},
     volume = {04},
     year = {1998},
     doi = {10.1090/S1079-6762-98-00052-3},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-98-00052-3/}
}
TY  - JOUR
AU  - Ivanov, Sergei
TI  - On aspherical presentations of groups
JO  - Electronic research announcements of the American Mathematical Society
PY  - 1998
SP  - 109
EP  - 114
VL  - 04
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-98-00052-3/
DO  - 10.1090/S1079-6762-98-00052-3
ID  - ERAAMS_1998_04_a14
ER  - 
%0 Journal Article
%A Ivanov, Sergei
%T On aspherical presentations of groups
%J Electronic research announcements of the American Mathematical Society
%D 1998
%P 109-114
%V 04
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-98-00052-3/
%R 10.1090/S1079-6762-98-00052-3
%F ERAAMS_1998_04_a14
Ivanov, Sergei. On aspherical presentations of groups. Electronic research announcements of the American Mathematical Society, Tome 04 (1998), pp. 109-114. doi : 10.1090/S1079-6762-98-00052-3. http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-98-00052-3/

[1] Ashmanov, I. S., Ol′Shanskiĭ, A. Yu. Abelian and central extensions of aspherical groups Izv. Vyssh. Uchebn. Zaved. Mat. 1985

[2] Andrews, J. J., Curtis, M. L. Free groups and handlebodies Proc. Amer. Math. Soc. 1965 192 195

[3] Brodskiĭ, S. D. Equations over groups and groups with one defining relation Uspekhi Mat. Nauk 1980 183

[4] Gutiérrez, Mauricio A., Ratcliffe, John G. On the second homotopy group Quart. J. Math. Oxford Ser. (2) 1981 45 55

[5] Howie, James Some remarks on a problem of J. H. C. Whitehead Topology 1983 475 485

[6] Howie, James On locally indicable groups Math. Z. 1982 445 461

[7] Huebschmann, Johannes Cohomology theory of aspherical groups and of small cancellation groups J. Pure Appl. Algebra 1979 137 143

[8] Huebschmann, Johannes Aspherical 2-complexes and an unsettled problem of J. H. C. Whitehead Math. Ann. 1981/82 17 37

[9] Ivanov, Sergei V. The free Burnside groups of sufficiently large exponents Internat. J. Algebra Comput. 1994

[10] Ivanov, Sergei V., Ol′Shanskii, Alexander Yu. Some applications of graded diagrams in combinatorial group theory 1991 258 308

[11] Ivanov, S. V., Ol′Shanskiĭ, A. Yu. Hyperbolic groups and their quotients of bounded exponents Trans. Amer. Math. Soc. 1996 2091 2138

[12] Klyachko, Anton A. A funny property of sphere and equations over groups Comm. Algebra 1993 2555 2575

[13] Levin, Frank Solutions of equations over groups Bull. Amer. Math. Soc. 1962 603 604

[14] Luft, E. On 2-dimensional aspherical complexes and a problem of J. H. C. Whitehead Math. Proc. Cambridge Philos. Soc. 1996 493 495

[15] Everett, C. J., Jr. Annihilator ideals and representation iteration for abstract rings Duke Math. J. 1939 623 627

[16] Lyndon, Roger C., Schupp, Paul E. Combinatorial group theory 1977

[17] Ol′Shanskiĭ, A. Yu. The Novikov-Adyan theorem Mat. Sb. (N.S.) 1982

[18] Ol′Shanskiĭ, A. Yu. Groups of bounded period with subgroups of prime order Algebra i Logika 1982 553 618

[19] Ol′Shanskiĭ, A. Yu. Geometry of defining relations in groups 1991

[20] Sieradski, Allan J. Combinatorial isomorphisms and combinatorial homotopy equivalences J. Pure Appl. Algebra 1976 59 95

[21] Dickson, Leonard Eugene New First Course in the Theory of Equations 1939

Cité par Sources :