Drinfel’d doubles and Ehresmann doubles for Lie algebroids and Lie bialgebroids
Electronic research announcements of the American Mathematical Society, Tome 04 (1998), pp. 74-87.

Voir la notice de l'article provenant de la source American Mathematical Society

We show that the Manin triple characterization of Lie bialgebras in terms of the Drinfel’d double may be extended to arbitrary Poisson manifolds and indeed Lie bialgebroids by using double cotangent bundles, rather than the direct sum structures (Courant algebroids) utilized for similar purposes by Liu, Weinstein and Xu. This is achieved in terms of an abstract notion of double Lie algebroid (where “double” is now used in the Ehresmann sense) which unifies many iterated constructions in differential geometry.
DOI : 10.1090/S1079-6762-98-00050-X

Mackenzie, K. 1

1 School of Mathematics and Statistics, University of Sheffield, Sheffield, S3 7RH, England
@article{ERAAMS_1998_04_a10,
     author = {Mackenzie, K.},
     title = {Drinfel{\textquoteright}d doubles and {Ehresmann} doubles for {Lie} algebroids and {Lie} bialgebroids},
     journal = {Electronic research announcements of the American Mathematical Society},
     pages = {74--87},
     publisher = {mathdoc},
     volume = {04},
     year = {1998},
     doi = {10.1090/S1079-6762-98-00050-X},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-98-00050-X/}
}
TY  - JOUR
AU  - Mackenzie, K.
TI  - Drinfel’d doubles and Ehresmann doubles for Lie algebroids and Lie bialgebroids
JO  - Electronic research announcements of the American Mathematical Society
PY  - 1998
SP  - 74
EP  - 87
VL  - 04
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-98-00050-X/
DO  - 10.1090/S1079-6762-98-00050-X
ID  - ERAAMS_1998_04_a10
ER  - 
%0 Journal Article
%A Mackenzie, K.
%T Drinfel’d doubles and Ehresmann doubles for Lie algebroids and Lie bialgebroids
%J Electronic research announcements of the American Mathematical Society
%D 1998
%P 74-87
%V 04
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-98-00050-X/
%R 10.1090/S1079-6762-98-00050-X
%F ERAAMS_1998_04_a10
Mackenzie, K. Drinfel’d doubles and Ehresmann doubles for Lie algebroids and Lie bialgebroids. Electronic research announcements of the American Mathematical Society, Tome 04 (1998), pp. 74-87. doi : 10.1090/S1079-6762-98-00050-X. http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-98-00050-X/

[1] Albert, C., Dazord, P. Théorie des groupoïdes symplectiques. Chapitre II. Groupoïdes symplectiques 1990 27 99

[2] Besse, Arthur L. Manifolds all of whose geodesics are closed 1978

[3] Brown, Ronald From groups to groupoids: a brief survey Bull. London Math. Soc. 1987 113 134

[4] Brown, Ronald, Mackenzie, Kirill C. H. Determination of a double Lie groupoid by its core diagram J. Pure Appl. Algebra 1992 237 272

[5] Coste, A., Dazord, P., Weinstein, A. Groupoïdes symplectiques 1987

[6] Courant, Theodore James Dirac manifolds Trans. Amer. Math. Soc. 1990 631 661

[7] Drinfel′D, V. G. Hamiltonian structures on Lie groups, Lie bialgebras and the geometric meaning of classical Yang-Baxter equations Dokl. Akad. Nauk SSSR 1983 285 287

[8] Drinfel′D, V. G. Quantum groups 1987 798 820

[9] Higgins, Philip J., Mackenzie, Kirill Algebraic constructions in the category of Lie algebroids J. Algebra 1990 194 230

[10] Huebschmann, Johannes Poisson cohomology and quantization J. Reine Angew. Math. 1990 57 113

[11] Kosmann-Schwarzbach, Y. Exact Gerstenhaber algebras and Lie bialgebroids Acta Appl. Math. 1995 153 165

[12] Liu, Zhang-Ju, Weinstein, Alan, Xu, Ping Manin triples for Lie bialgebroids J. Differential Geom. 1997 547 574

[13] Lu, Jiang-Hua Poisson homogeneous spaces and Lie algebroids associated to Poisson actions Duke Math. J. 1997 261 304

[14] Lu, Jiang-Hua, Weinstein, Alan Groupoïdes symplectiques doubles des groupes de Lie-Poisson C. R. Acad. Sci. Paris Sér. I Math. 1989 951 954

[15] Lu, Jiang-Hua, Weinstein, Alan Poisson Lie groups, dressing transformations, and Bruhat decompositions J. Differential Geom. 1990 501 526

[16] Mackenzie, K. Lie groupoids and Lie algebroids in differential geometry 1987

[17] Mackenzie, Kirill C. H. Double Lie algebroids and second-order geometry. I Adv. Math. 1992 180 239

[18] Mackenzie, Kirill C. H., Xu, Ping Lie bialgebroids and Poisson groupoids Duke Math. J. 1994 415 452

[19] Majid, Shahn Matched pairs of Lie groups associated to solutions of the Yang-Baxter equations Pacific J. Math. 1990 311 332

[20] Pradines, Jean Fibres vectoriels doubles et calcul des jets non holonomes 1977 184

[21] Pradines, Jean Remarque sur le groupoïde cotangent de Weinstein-Dazord C. R. Acad. Sci. Paris Sér. I Math. 1988 557 560

[22] Tulczyjew, Włodzimierz M. Geometric formulations of physical theories 1989

[23] Weinstein, Alan Coisotropic calculus and Poisson groupoids J. Math. Soc. Japan 1988 705 727

Cité par Sources :