Voir la notice de l'article provenant de la source American Mathematical Society
@article{ERAAMS_1998_04_a9, author = {Koll\'ar, J\'anos}, title = {The {Nash} conjecture for threefolds}, journal = {Electronic research announcements of the American Mathematical Society}, pages = {63--73}, publisher = {mathdoc}, volume = {04}, year = {1998}, doi = {10.1090/S1079-6762-98-00049-3}, url = {http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-98-00049-3/} }
TY - JOUR AU - Kollár, János TI - The Nash conjecture for threefolds JO - Electronic research announcements of the American Mathematical Society PY - 1998 SP - 63 EP - 73 VL - 04 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-98-00049-3/ DO - 10.1090/S1079-6762-98-00049-3 ID - ERAAMS_1998_04_a9 ER -
%0 Journal Article %A Kollár, János %T The Nash conjecture for threefolds %J Electronic research announcements of the American Mathematical Society %D 1998 %P 63-73 %V 04 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-98-00049-3/ %R 10.1090/S1079-6762-98-00049-3 %F ERAAMS_1998_04_a9
Kollár, János. The Nash conjecture for threefolds. Electronic research announcements of the American Mathematical Society, Tome 04 (1998), pp. 63-73. doi : 10.1090/S1079-6762-98-00049-3. http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-98-00049-3/
[1] Rational structures on 3-manifolds Pacific J. Math. 1991 201 214
,[2] Singularities of differentiable maps. Vol. I 1985
, ,[3] Déchirures de variétés de dimension trois et la conjecture de Nash de rationalité en dimension trois Comment. Math. Helv. 1992 514 545
,[4] Géométrie algébrique réelle 1987
, ,[5] Higher-dimensional complex geometry Astérisque 1988
, ,[6] Elementary contractions of Gorenstein threefolds Math. Ann. 1988 521 525
[7] Algebraic geometry 1977
[8] 3-Manifolds 1976
[9] The intermediate Jacobian of three-dimensional varieties 1979
[10] Boundedness of 𝐐-Fano threefolds 1992 439 445
[11] Divisorial contractions to 3-dimensional terminal quotient singularities 1996 241 246
[12] Topological types of nonsingular surfaces of degree 4 in 𝑅𝑃³ Funkcional. Anal. i Priložen. 1976 55 68
[13] The structure of algebraic threefolds: an introduction to Mori’s program Bull. Amer. Math. Soc. (N.S.) 1987 211 273
[14] Effective base point freeness Math. Ann. 1993 595 605
[15] Rational curves on algebraic varieties 1996
[16] Rationally connected varieties J. Algebraic Geom. 1992 429 448
, ,[17] Normal degenerations of the complex projective plane J. Reine Angew. Math. 1991 89 118
[18] Normal projective surfaces with 𝜌 Rend. Sem. Mat. Univ. Padova 1993 195 205
[19] Blowup equivalence of smooth closed manifolds Topology 1997 287 299
[20] Threefolds whose canonical bundles are not numerically effective Ann. of Math. (2) 1982 133 176
[21] Sur les inverses des éléments dérivables dans un anneau abstrait C. R. Acad. Sci. Paris 1939 285 287
[22] Young person’s guide to canonical singularities 1987 345 414
[23] Nonnormal del Pezzo surfaces Publ. Res. Inst. Math. Sci. 1994 695 727
[24] Knots and links 1976
[25] The geometries of 3-manifolds Bull. London Math. Soc. 1983 401 487
[26] Osnovy algebraicheskoĭ geometrii 1972
[27] Su una congettura di Nash Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3) 1973 167 185
Cité par Sources :