Voir la notice de l'article provenant de la source American Mathematical Society
@article{ERAAMS_1998_04_a8, author = {Lee, Tzong-Yow}, title = {Asymptotic results for {super-Brownian} motions and semilinear differential equations}, journal = {Electronic research announcements of the American Mathematical Society}, pages = {56--62}, publisher = {mathdoc}, volume = {04}, year = {1998}, doi = {10.1090/S1079-6762-98-00048-1}, url = {http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-98-00048-1/} }
TY - JOUR AU - Lee, Tzong-Yow TI - Asymptotic results for super-Brownian motions and semilinear differential equations JO - Electronic research announcements of the American Mathematical Society PY - 1998 SP - 56 EP - 62 VL - 04 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-98-00048-1/ DO - 10.1090/S1079-6762-98-00048-1 ID - ERAAMS_1998_04_a8 ER -
%0 Journal Article %A Lee, Tzong-Yow %T Asymptotic results for super-Brownian motions and semilinear differential equations %J Electronic research announcements of the American Mathematical Society %D 1998 %P 56-62 %V 04 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-98-00048-1/ %R 10.1090/S1079-6762-98-00048-1 %F ERAAMS_1998_04_a8
Lee, Tzong-Yow. Asymptotic results for super-Brownian motions and semilinear differential equations. Electronic research announcements of the American Mathematical Society, Tome 04 (1998), pp. 56-62. doi : 10.1090/S1079-6762-98-00048-1. http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-98-00048-1/
[1] Occupation time large deviations of the voter model Probab. Theory Related Fields 1988 401 413
, ,[2] Occupation times for critical branching Brownian motions Ann. Probab. 1985 1108 1132
,[3] The critical measure diffusion process Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 1977 125 145
[4] Large deviations from the McKean-Vlasov limit for weakly interacting diffusions Stochastics 1987 247 308
,[5] Superprocesses and their linear additive functionals Trans. Amer. Math. Soc. 1989 255 282
[6] A weighted occupation time for a class of measure-valued branching processes Probab. Theory Relat. Fields 1986 85 116
[7] Ergodic theory and a local occupation time for measure-valued critical branching Brownian motion Stochastics 1986 197 243
[8] Large deviations for occupation times of measure-valued branching Brownian motions Stochastics Stochastics Rep. 1993 177 209
,[9] Some limit theorems for critical branching Bessel processes, and related semilinear differential equations Probab. Theory Related Fields 1990 505 520
[10] Large deviations for the three-dimensional super-Brownian motion Ann. Probab. 1995 1755 1771
,Cité par Sources :