Asymptotic results for super-Brownian motions and semilinear differential equations
Electronic research announcements of the American Mathematical Society, Tome 04 (1998), pp. 56-62.

Voir la notice de l'article provenant de la source American Mathematical Society

Limit laws for three-dimensional super-Brownian motion are derived, conditioned on survival up to a large time. A large deviation principle is proved for the joint behavior of occupation times and their difference. These are done via analyzing the generating function and exploiting a connection between probability and differential/integral equations.
DOI : 10.1090/S1079-6762-98-00048-1

Lee, Tzong-Yow 1

1 University of Maryland, College Park, MD
@article{ERAAMS_1998_04_a8,
     author = {Lee, Tzong-Yow},
     title = {Asymptotic results for {super-Brownian} motions and semilinear differential equations},
     journal = {Electronic research announcements of the American Mathematical Society},
     pages = {56--62},
     publisher = {mathdoc},
     volume = {04},
     year = {1998},
     doi = {10.1090/S1079-6762-98-00048-1},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-98-00048-1/}
}
TY  - JOUR
AU  - Lee, Tzong-Yow
TI  - Asymptotic results for super-Brownian motions and semilinear differential equations
JO  - Electronic research announcements of the American Mathematical Society
PY  - 1998
SP  - 56
EP  - 62
VL  - 04
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-98-00048-1/
DO  - 10.1090/S1079-6762-98-00048-1
ID  - ERAAMS_1998_04_a8
ER  - 
%0 Journal Article
%A Lee, Tzong-Yow
%T Asymptotic results for super-Brownian motions and semilinear differential equations
%J Electronic research announcements of the American Mathematical Society
%D 1998
%P 56-62
%V 04
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-98-00048-1/
%R 10.1090/S1079-6762-98-00048-1
%F ERAAMS_1998_04_a8
Lee, Tzong-Yow. Asymptotic results for super-Brownian motions and semilinear differential equations. Electronic research announcements of the American Mathematical Society, Tome 04 (1998), pp. 56-62. doi : 10.1090/S1079-6762-98-00048-1. http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-98-00048-1/

[1] Bramson, Maury, Cox, J. Theodore, Griffeath, David Occupation time large deviations of the voter model Probab. Theory Related Fields 1988 401 413

[2] Cox, J. Theodore, Griffeath, David Occupation times for critical branching Brownian motions Ann. Probab. 1985 1108 1132

[3] Dawson, D. A. The critical measure diffusion process Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 1977 125 145

[4] Dawson, Donald A., Gärtner, Jürgen Large deviations from the McKean-Vlasov limit for weakly interacting diffusions Stochastics 1987 247 308

[5] Dynkin, E. B. Superprocesses and their linear additive functionals Trans. Amer. Math. Soc. 1989 255 282

[6] Iscoe, I. A weighted occupation time for a class of measure-valued branching processes Probab. Theory Relat. Fields 1986 85 116

[7] Iscoe, I. Ergodic theory and a local occupation time for measure-valued critical branching Brownian motion Stochastics 1986 197 243

[8] Iscoe, Ian, Lee, Tzong-Yow Large deviations for occupation times of measure-valued branching Brownian motions Stochastics Stochastics Rep. 1993 177 209

[9] Lee, T.-Y. Some limit theorems for critical branching Bessel processes, and related semilinear differential equations Probab. Theory Related Fields 1990 505 520

[10] Lee, Tzong-Yow, Remillard, Bruno Large deviations for the three-dimensional super-Brownian motion Ann. Probab. 1995 1755 1771

Cité par Sources :