The incipient infinite cluster in high-dimensional percolation
Electronic research announcements of the American Mathematical Society, Tome 04 (1998), pp. 48-55.

Voir la notice de l'article provenant de la source American Mathematical Society

We announce our recent proof that, for independent bond percolation in high dimensions, the scaling limits of the incipient infinite cluster’s two-point and three-point functions are those of integrated super-Brownian excursion (ISE). The proof uses an extension of the lace expansion for percolation.
DOI : 10.1090/S1079-6762-98-00046-8

Hara, Takashi 1 ; Slade, Gordon 2

1 Department of Applied Physics, Tokyo Institute of Technology, Oh-Okayama, Meguro-ku, Tokyo 152, Japan
2 Department of Mathematics and Statistics, McMaster University, Hamilton, ON, Canada L8S 4K1
@article{ERAAMS_1998_04_a7,
     author = {Hara, Takashi and Slade, Gordon},
     title = {The incipient infinite cluster in high-dimensional percolation},
     journal = {Electronic research announcements of the American Mathematical Society},
     pages = {48--55},
     publisher = {mathdoc},
     volume = {04},
     year = {1998},
     doi = {10.1090/S1079-6762-98-00046-8},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-98-00046-8/}
}
TY  - JOUR
AU  - Hara, Takashi
AU  - Slade, Gordon
TI  - The incipient infinite cluster in high-dimensional percolation
JO  - Electronic research announcements of the American Mathematical Society
PY  - 1998
SP  - 48
EP  - 55
VL  - 04
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-98-00046-8/
DO  - 10.1090/S1079-6762-98-00046-8
ID  - ERAAMS_1998_04_a7
ER  - 
%0 Journal Article
%A Hara, Takashi
%A Slade, Gordon
%T The incipient infinite cluster in high-dimensional percolation
%J Electronic research announcements of the American Mathematical Society
%D 1998
%P 48-55
%V 04
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-98-00046-8/
%R 10.1090/S1079-6762-98-00046-8
%F ERAAMS_1998_04_a7
Hara, Takashi; Slade, Gordon. The incipient infinite cluster in high-dimensional percolation. Electronic research announcements of the American Mathematical Society, Tome 04 (1998), pp. 48-55. doi : 10.1090/S1079-6762-98-00046-8. http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-98-00046-8/

[1] Aizenman, Michael, Barsky, David J. Sharpness of the phase transition in percolation models Comm. Math. Phys. 1987 489 526

[2] Aizenman, Michael, Newman, Charles M. Tree graph inequalities and critical behavior in percolation models J. Statist. Phys. 1984 107 143

[3] Aldous, David The continuum random tree. III Ann. Probab. 1993 248 289

[4] Aldous, David Tree-based models for random distribution of mass J. Statist. Phys. 1993 625 641

[5] Barsky, D. J., Aizenman, M. Percolation critical exponents under the triangle condition Ann. Probab. 1991 1520 1536

[6] Chayes, J. T., Chayes, L., Durrett, R. Inhomogeneous percolation problems and incipient infinite clusters J. Phys. A 1987 1521 1530

[7] Grimmett, Geoffrey Percolation 1989

[8] Hara, Takashi, Slade, Gordon Mean-field critical behaviour for percolation in high dimensions Comm. Math. Phys. 1990 333 391

[9] Hara, Takashi, Slade, Gordon The number and size of branched polymers in high dimensions J. Statist. Phys. 1992 1009 1038

[10] Hara, Takashi, Slade, Gordon Mean-field behaviour and the lace expansion 1994 87 122

[11] Hughes, Barry D. Random walks and random environments. Vol. 2 1996

[12] Kesten, Harry Percolation theory for mathematicians 1982

[13] Kesten, Harry The incipient infinite cluster in two-dimensional percolation Probab. Theory Related Fields 1986 369 394

[14] Le Gall, Jean-François The uniform random tree in a Brownian excursion Probab. Theory Related Fields 1993 369 383

[15] Madras, Neal, Slade, Gordon The self-avoiding walk 1993

Cité par Sources :