Orthogonal harmonic analysis of fractal measures
Electronic research announcements of the American Mathematical Society, Tome 04 (1998), pp. 35-42.

Voir la notice de l'article provenant de la source American Mathematical Society

We show that certain iteration systems lead to fractal measures admitting an exact orthogonal harmonic analysis.
DOI : 10.1090/S1079-6762-98-00044-4

Jorgensen, Palle 1 ; Pedersen, Steen 2

1 Department of Mathematics, University of Iowa, Iowa City, IA 52242
2 Department of Mathematics, Wright State University, Dayton, OH 45435
@article{ERAAMS_1998_04_a5,
     author = {Jorgensen, Palle and Pedersen, Steen},
     title = {Orthogonal harmonic analysis of fractal measures},
     journal = {Electronic research announcements of the American Mathematical Society},
     pages = {35--42},
     publisher = {mathdoc},
     volume = {04},
     year = {1998},
     doi = {10.1090/S1079-6762-98-00044-4},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-98-00044-4/}
}
TY  - JOUR
AU  - Jorgensen, Palle
AU  - Pedersen, Steen
TI  - Orthogonal harmonic analysis of fractal measures
JO  - Electronic research announcements of the American Mathematical Society
PY  - 1998
SP  - 35
EP  - 42
VL  - 04
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-98-00044-4/
DO  - 10.1090/S1079-6762-98-00044-4
ID  - ERAAMS_1998_04_a5
ER  - 
%0 Journal Article
%A Jorgensen, Palle
%A Pedersen, Steen
%T Orthogonal harmonic analysis of fractal measures
%J Electronic research announcements of the American Mathematical Society
%D 1998
%P 35-42
%V 04
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-98-00044-4/
%R 10.1090/S1079-6762-98-00044-4
%F ERAAMS_1998_04_a5
Jorgensen, Palle; Pedersen, Steen. Orthogonal harmonic analysis of fractal measures. Electronic research announcements of the American Mathematical Society, Tome 04 (1998), pp. 35-42. doi : 10.1090/S1079-6762-98-00044-4. http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-98-00044-4/

[1] Friedrich, Jürgen On first order partial differential operators on bounded regions of the plane Math. Nachr. 1987 33 47

[2] Fuglede, Bent Commuting self-adjoint partial differential operators and a group theoretic problem J. Functional Analysis 1974 101 121

[3] Jørgensen, Palle E. T. Spectral theory of finite volume domains in 𝑅ⁿ Adv. in Math. 1982 105 120

[4] Jorgensen, Palle E. T., Pedersen, Steen Spectral theory for Borel sets in 𝑅ⁿ of finite measure J. Funct. Anal. 1992 72 104

[5] Jorgensen, Palle E. T., Pedersen, Steen Harmonic analysis and fractal limit-measures induced by representations of a certain 𝐶*-algebra J. Funct. Anal. 1994 90 110

[6] Jorgensen, P. E. T., Pedersen, S. Harmonic analysis of fractal measures Constr. Approx. 1996 1 30

[7] Kigami, Jun, Lapidus, Michel L. Weyl’s problem for the spectral distribution of Laplacians on p.c.f. self-similar fractals Comm. Math. Phys. 1993 93 125

[8] Kolountzakis, Mihail N., Lagarias, Jeffrey C. Structure of tilings of the line by a function Duke Math. J. 1996 653 678

[9] Pedersen, Steen Spectral sets whose spectrum is a lattice with a base J. Funct. Anal. 1996 496 509

[10] Pedersen, Steen Spectral theory of commuting selfadjoint partial differential operators J. Funct. Anal. 1987 122 134

[11] Pedersen, Steen Spectral sets whose spectrum is a lattice with a base J. Funct. Anal. 1996 496 509

[12] Strichartz, Robert S. Self-similarity in harmonic analysis J. Fourier Anal. Appl. 1994 1 37

Cité par Sources :