Voir la notice de l'article provenant de la source American Mathematical Society
Jorgensen, Palle 1 ; Pedersen, Steen 2
@article{ERAAMS_1998_04_a5, author = {Jorgensen, Palle and Pedersen, Steen}, title = {Orthogonal harmonic analysis of fractal measures}, journal = {Electronic research announcements of the American Mathematical Society}, pages = {35--42}, publisher = {mathdoc}, volume = {04}, year = {1998}, doi = {10.1090/S1079-6762-98-00044-4}, url = {http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-98-00044-4/} }
TY - JOUR AU - Jorgensen, Palle AU - Pedersen, Steen TI - Orthogonal harmonic analysis of fractal measures JO - Electronic research announcements of the American Mathematical Society PY - 1998 SP - 35 EP - 42 VL - 04 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-98-00044-4/ DO - 10.1090/S1079-6762-98-00044-4 ID - ERAAMS_1998_04_a5 ER -
%0 Journal Article %A Jorgensen, Palle %A Pedersen, Steen %T Orthogonal harmonic analysis of fractal measures %J Electronic research announcements of the American Mathematical Society %D 1998 %P 35-42 %V 04 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-98-00044-4/ %R 10.1090/S1079-6762-98-00044-4 %F ERAAMS_1998_04_a5
Jorgensen, Palle; Pedersen, Steen. Orthogonal harmonic analysis of fractal measures. Electronic research announcements of the American Mathematical Society, Tome 04 (1998), pp. 35-42. doi : 10.1090/S1079-6762-98-00044-4. http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-98-00044-4/
[1] On first order partial differential operators on bounded regions of the plane Math. Nachr. 1987 33 47
[2] Commuting self-adjoint partial differential operators and a group theoretic problem J. Functional Analysis 1974 101 121
[3] Spectral theory of finite volume domains in 𝑅ⁿ Adv. in Math. 1982 105 120
[4] Spectral theory for Borel sets in 𝑅ⁿ of finite measure J. Funct. Anal. 1992 72 104
,[5] Harmonic analysis and fractal limit-measures induced by representations of a certain 𝐶*-algebra J. Funct. Anal. 1994 90 110
,[6] Harmonic analysis of fractal measures Constr. Approx. 1996 1 30
,[7] Weyl’s problem for the spectral distribution of Laplacians on p.c.f. self-similar fractals Comm. Math. Phys. 1993 93 125
,[8] Structure of tilings of the line by a function Duke Math. J. 1996 653 678
,[9] Spectral sets whose spectrum is a lattice with a base J. Funct. Anal. 1996 496 509
[10] Spectral theory of commuting selfadjoint partial differential operators J. Funct. Anal. 1987 122 134
[11] Spectral sets whose spectrum is a lattice with a base J. Funct. Anal. 1996 496 509
[12] Self-similarity in harmonic analysis J. Fourier Anal. Appl. 1994 1 37
Cité par Sources :