Voir la notice de l'article provenant de la source American Mathematical Society
@article{ERAAMS_1998_04_a4, author = {Ford, Kevin}, title = {The distribution of totients}, journal = {Electronic research announcements of the American Mathematical Society}, pages = {27--34}, publisher = {mathdoc}, volume = {04}, year = {1998}, doi = {10.1090/S1079-6762-98-00043-2}, url = {http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-98-00043-2/} }
TY - JOUR AU - Ford, Kevin TI - The distribution of totients JO - Electronic research announcements of the American Mathematical Society PY - 1998 SP - 27 EP - 34 VL - 04 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-98-00043-2/ DO - 10.1090/S1079-6762-98-00043-2 ID - ERAAMS_1998_04_a4 ER -
Ford, Kevin. The distribution of totients. Electronic research announcements of the American Mathematical Society, Tome 04 (1998), pp. 27-34. doi : 10.1090/S1079-6762-98-00043-2. http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-98-00043-2/
[1] On polynomials with only real roots Ann. of Math. (2) 1939 537 548
,[2] Some remarks on Euler’s 𝜑 function Acta Arith. 1958 10 19
[3] On the values of Euler’s 𝜙-function Acta Arith. 1973 201 206
,[4] Distinct values of Euler’s 𝜙-function Mathematika 1976 1 3
,[5] On the normal number of prime factors of 𝜙(𝑛) Rocky Mountain J. Math. 1985 343 352
,[6] Divisors 1988
,[7] A characterization of Boolean algebras Ann. of Math. (2) 1939 609 610
,[8] On the number of distinct values of Euler’s 𝜙-function Acta Arith. 1988 263 275
,[9] A lower bound for a counterexample to Carmichael’s conjecture Boll. Un. Mat. Ital. A (6) 1982 313 316
,[10] On the distribution of the values of Euler’s function Acta Arith. 1986 63 70
[11] Untersuchungen über reinverzweigte Erweiterungen diskret bewerteter perfekter Körper J. Reine Angew. Math. 1939 1 44
[12] Remarks on the paper “Sur certaines hypothèses concernant les nombres premiers” Acta Arith. 1961/62 1 8
[13] Sur certaines hypothèses concernant les nombres premiers Acta Arith. 1958
,[14] Carmichael’s conjecture on the Euler function is valid below 10^{10,000,000} Math. Comp. 1994 415 419
,Cité par Sources :