Homotopy invariance of relative eta-invariants and 𝐶*-algebra 𝐾-theory
Electronic research announcements of the American Mathematical Society, Tome 04 (1998), pp. 18-26.

Voir la notice de l'article provenant de la source American Mathematical Society

We prove a close cousin of a theorem of Weinberger about the homotopy invariance of certain relative eta-invariants by placing the problem in operator $K$-theory. The main idea is to use a homotopy equivalence $h:M \to M’$ to construct a loop of invertible operators whose “winding number" is related to eta-invariants. The Baum-Connes conjecture and a technique motivated by the Atiyah-Singer index theorem provides us with the invariance of this winding number under twistings by finite-dimensional unitary representations of $\pi _{1}(M)$.
DOI : 10.1090/S1079-6762-98-00042-0

Keswani, Navin 1

1 Department of Mathematics, The Pennsylvania State University, University Park, PA 16802
@article{ERAAMS_1998_04_a3,
     author = {Keswani, Navin},
     title = {Homotopy invariance of relative eta-invariants and {\ensuremath{\mathit{C}}*-algebra} {\ensuremath{\mathit{K}}-theory}},
     journal = {Electronic research announcements of the American Mathematical Society},
     pages = {18--26},
     publisher = {mathdoc},
     volume = {04},
     year = {1998},
     doi = {10.1090/S1079-6762-98-00042-0},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-98-00042-0/}
}
TY  - JOUR
AU  - Keswani, Navin
TI  - Homotopy invariance of relative eta-invariants and 𝐶*-algebra 𝐾-theory
JO  - Electronic research announcements of the American Mathematical Society
PY  - 1998
SP  - 18
EP  - 26
VL  - 04
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-98-00042-0/
DO  - 10.1090/S1079-6762-98-00042-0
ID  - ERAAMS_1998_04_a3
ER  - 
%0 Journal Article
%A Keswani, Navin
%T Homotopy invariance of relative eta-invariants and 𝐶*-algebra 𝐾-theory
%J Electronic research announcements of the American Mathematical Society
%D 1998
%P 18-26
%V 04
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-98-00042-0/
%R 10.1090/S1079-6762-98-00042-0
%F ERAAMS_1998_04_a3
Keswani, Navin. Homotopy invariance of relative eta-invariants and 𝐶*-algebra 𝐾-theory. Electronic research announcements of the American Mathematical Society, Tome 04 (1998), pp. 18-26. doi : 10.1090/S1079-6762-98-00042-0. http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-98-00042-0/

[1] Atiyah, M. F., Patodi, V. K., Singer, I. M. Spectral asymmetry and Riemannian geometry. I Math. Proc. Cambridge Philos. Soc. 1975 43 69

[2] Atiyah, M. F., Patodi, V. K., Singer, I. M. Spectral asymmetry and Riemannian geometry. I Math. Proc. Cambridge Philos. Soc. 1975 43 69

[3] Blackadar, Bruce 𝐾-theory for operator algebras 1986

[4] Baum, Paul, Connes, Alain, Higson, Nigel Classifying space for proper actions and 𝐾-theory of group 𝐶*-algebras 1994 240 291

[5] Baum, Paul, Douglas, Ronald G. 𝐾 homology and index theory 1982 117 173

[6] Gilkey, Peter B. Invariance theory, the heat equation, and the Atiyah-Singer index theorem 1995

[7] De La Harpe, P., Skandalis, G. Déterminant associé à une trace sur une algébre de Banach Ann. Inst. Fourier (Grenoble) 1984 241 260

[8] Kasparov, G. G. Topological invariants of elliptic operators. I. 𝐾-homology Izv. Akad. Nauk SSSR Ser. Mat. 1975 796 838

[9] Kasparov, G. G. Equivariant 𝐾𝐾-theory and the Novikov conjecture Invent. Math. 1988 147 201

[10] Kaminker, Jerome, Miller, John G. Homotopy invariance of the analytic index of signature operators over 𝐶*-algebras J. Operator Theory 1985 113 127

[11] Neumann, Walter D. Signature related invariants of manifolds. I. Monodromy and 𝛾-invariants Topology 1979 147 172

[12] De Rham, G., Maumary, S., Kervaire, M. A. Torsion et type simple d’homotopie 1967

[13] Roe, John Elliptic operators, topology and asymptotic methods 1988

[14] Rosenberg, Jonathan Analytic Novikov for topologists 1995 338 372

[15] Weinberger, Shmuel Homotopy invariance of 𝜂-invariants Proc. Nat. Acad. Sci. U.S.A. 1988 5362 5363

Cité par Sources :