Some Lie rings associated with Burnside groups
Electronic research announcements of the American Mathematical Society, Tome 04 (1998), pp. 1-3.

Voir la notice de l'article provenant de la source American Mathematical Society

We describe some calculations in graded Lie rings which provide a fairly sharp upper bound for the nilpotency class and for the order of the restricted Burnside group on two generators with exponent 7.
DOI : 10.1090/S1079-6762-98-00039-0

Newman, M. 1 ; Vaughan-Lee, Michael 2

1 Australian National University
2 University of Oxford
@article{ERAAMS_1998_04_a0,
     author = {Newman, M. and Vaughan-Lee, Michael},
     title = {Some {Lie} rings associated with {Burnside} groups},
     journal = {Electronic research announcements of the American Mathematical Society},
     pages = {1--3},
     publisher = {mathdoc},
     volume = {04},
     year = {1998},
     doi = {10.1090/S1079-6762-98-00039-0},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-98-00039-0/}
}
TY  - JOUR
AU  - Newman, M.
AU  - Vaughan-Lee, Michael
TI  - Some Lie rings associated with Burnside groups
JO  - Electronic research announcements of the American Mathematical Society
PY  - 1998
SP  - 1
EP  - 3
VL  - 04
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-98-00039-0/
DO  - 10.1090/S1079-6762-98-00039-0
ID  - ERAAMS_1998_04_a0
ER  - 
%0 Journal Article
%A Newman, M.
%A Vaughan-Lee, Michael
%T Some Lie rings associated with Burnside groups
%J Electronic research announcements of the American Mathematical Society
%D 1998
%P 1-3
%V 04
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-98-00039-0/
%R 10.1090/S1079-6762-98-00039-0
%F ERAAMS_1998_04_a0
Newman, M.; Vaughan-Lee, Michael. Some Lie rings associated with Burnside groups. Electronic research announcements of the American Mathematical Society, Tome 04 (1998), pp. 1-3. doi : 10.1090/S1079-6762-98-00039-0. http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-98-00039-0/

[1] Havas, George, Newman, M. F., Vaughan-Lee, M. R. A nilpotent quotient algorithm for graded Lie rings J. Symbolic Comput. 1990 653 664

[2] Newman, M. F., O’Brien, E. A. Application of computers to questions like those of Burnside. II Internat. J. Algebra Comput. 1996 593 605

[3] Vaughan-Lee, Michael The restricted Burnside problem 1993

[4] Vaughan-Lee, Michael The nilpotency class of finite groups of exponent 𝑝 Trans. Amer. Math. Soc. 1994 617 640

[5] Vaughan-Lee, Michael, Zel′Manov, E. I. Upper bounds in the restricted Burnside problem J. Algebra 1993 107 145

[6] Wall, G. E. On the Lie ring of a group of prime exponent 1974 667 690

[7] Wall, G. E. On the Lie ring of a group of prime exponent. II Bull. Austral. Math. Soc. 1978 11 28

Cité par Sources :