Invariants of twist-wise flow equivalence
Electronic research announcements of the American Mathematical Society, Tome 03 (1997), pp. 126-130.

Voir la notice de l'article provenant de la source American Mathematical Society

Twist-wise flow equivalence is a natural generalization of flow equivalence that takes account of twisting in the local stable manifold of the orbits of a flow. Here we announce the discovery of two new invariants in this category.
DOI : 10.1090/S1079-6762-97-00037-1

Sullivan, Michael 1

1 Department of Mathematics (4408), Southern Illinois University, Carbondale, IL 62901
@article{ERAAMS_1997_03_a20,
     author = {Sullivan, Michael},
     title = {Invariants of twist-wise flow equivalence},
     journal = {Electronic research announcements of the American Mathematical Society},
     pages = {126--130},
     publisher = {mathdoc},
     volume = {03},
     year = {1997},
     doi = {10.1090/S1079-6762-97-00037-1},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-97-00037-1/}
}
TY  - JOUR
AU  - Sullivan, Michael
TI  - Invariants of twist-wise flow equivalence
JO  - Electronic research announcements of the American Mathematical Society
PY  - 1997
SP  - 126
EP  - 130
VL  - 03
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-97-00037-1/
DO  - 10.1090/S1079-6762-97-00037-1
ID  - ERAAMS_1997_03_a20
ER  - 
%0 Journal Article
%A Sullivan, Michael
%T Invariants of twist-wise flow equivalence
%J Electronic research announcements of the American Mathematical Society
%D 1997
%P 126-130
%V 03
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-97-00037-1/
%R 10.1090/S1079-6762-97-00037-1
%F ERAAMS_1997_03_a20
Sullivan, Michael. Invariants of twist-wise flow equivalence. Electronic research announcements of the American Mathematical Society, Tome 03 (1997), pp. 126-130. doi : 10.1090/S1079-6762-97-00037-1. http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-97-00037-1/

[1] Bowen, Rufus, Franks, John Homology for zero-dimensional nonwandering sets Ann. of Math. (2) 1977 73 92

[2] Franks, John Flow equivalence of subshifts of finite type Ergodic Theory Dynam. Systems 1984 53 66

[3] Huang, Danrung Flow equivalence of reducible shifts of finite type Ergodic Theory Dynam. Systems 1994 695 720

[4] Huang, Danrun Flow equivalence of reducible shifts of finite type and Cuntz-Krieger algebras J. Reine Angew. Math. 1995 185 217

[5] Lind, Douglas, Marcus, Brian An introduction to symbolic dynamics and coding 1995

[6] Newman, Morris Integral matrices 1972

[7] Parry, Bill, Sullivan, Dennis A topological invariant of flows on 1-dimensional spaces Topology 1975 297 299

Cité par Sources :