Invariants of twist-wise flow equivalence
Electronic research announcements of the American Mathematical Society, Tome 03 (1997), pp. 126-130
Cet article a éte moissonné depuis la source American Mathematical Society
Twist-wise flow equivalence is a natural generalization of flow equivalence that takes account of twisting in the local stable manifold of the orbits of a flow. Here we announce the discovery of two new invariants in this category.
@article{10_1090_S1079_6762_97_00037_1,
author = {Sullivan, Michael},
title = {Invariants of twist-wise flow equivalence},
journal = {Electronic research announcements of the American Mathematical Society},
pages = {126--130},
year = {1997},
volume = {03},
doi = {10.1090/S1079-6762-97-00037-1},
url = {http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-97-00037-1/}
}
TY - JOUR AU - Sullivan, Michael TI - Invariants of twist-wise flow equivalence JO - Electronic research announcements of the American Mathematical Society PY - 1997 SP - 126 EP - 130 VL - 03 UR - http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-97-00037-1/ DO - 10.1090/S1079-6762-97-00037-1 ID - 10_1090_S1079_6762_97_00037_1 ER -
%0 Journal Article %A Sullivan, Michael %T Invariants of twist-wise flow equivalence %J Electronic research announcements of the American Mathematical Society %D 1997 %P 126-130 %V 03 %U http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-97-00037-1/ %R 10.1090/S1079-6762-97-00037-1 %F 10_1090_S1079_6762_97_00037_1
Sullivan, Michael. Invariants of twist-wise flow equivalence. Electronic research announcements of the American Mathematical Society, Tome 03 (1997), pp. 126-130. doi: 10.1090/S1079-6762-97-00037-1
[1] , Homology for zero-dimensional nonwandering sets Ann. of Math. (2) 1977 73 92
[2] Flow equivalence of subshifts of finite type Ergodic Theory Dynam. Systems 1984 53 66
[3] Flow equivalence of reducible shifts of finite type Ergodic Theory Dynam. Systems 1994 695 720
[4] Flow equivalence of reducible shifts of finite type and Cuntz-Krieger algebras J. Reine Angew. Math. 1995 185 217
[5] , An introduction to symbolic dynamics and coding 1995
[6] Integral matrices 1972
[7] , A topological invariant of flows on 1-dimensional spaces Topology 1975 297 299
Cité par Sources :