A deterministic displacement theorem for Poisson processes
Electronic research announcements of the American Mathematical Society, Tome 03 (1997), pp. 110-113
Cet article a éte moissonné depuis la source American Mathematical Society
We announce a deterministic analog of Bartlett’s displacement theorem. The result is that a Poisson property is stable with respect to deterministic Hamiltonian displacements. While the random point configurations move according to an $n$-body evolution, the mean measure $P$ satisfies a nonlinear Vlasov type equation $\dot {P} + y \cdot \nabla _x P - \nabla _y \cdot E(P) = 0$. Combined with Bartlett’s theorem, the result generalizes to interacting Brownian particles, where the mean measure satisfies a McKean-Vlasov type diffusion equation $\dot {P} + y \cdot \nabla _x P-\nabla _y \cdot E(P)- c \Delta P=0$.
@article{10_1090_S1079_6762_97_00033_4,
author = {Knill, Oliver},
title = {A deterministic displacement theorem for {Poisson} processes},
journal = {Electronic research announcements of the American Mathematical Society},
pages = {110--113},
year = {1997},
volume = {03},
doi = {10.1090/S1079-6762-97-00033-4},
url = {http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-97-00033-4/}
}
TY - JOUR AU - Knill, Oliver TI - A deterministic displacement theorem for Poisson processes JO - Electronic research announcements of the American Mathematical Society PY - 1997 SP - 110 EP - 113 VL - 03 UR - http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-97-00033-4/ DO - 10.1090/S1079-6762-97-00033-4 ID - 10_1090_S1079_6762_97_00033_4 ER -
%0 Journal Article %A Knill, Oliver %T A deterministic displacement theorem for Poisson processes %J Electronic research announcements of the American Mathematical Society %D 1997 %P 110-113 %V 03 %U http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-97-00033-4/ %R 10.1090/S1079-6762-97-00033-4 %F 10_1090_S1079_6762_97_00033_4
Knill, Oliver. A deterministic displacement theorem for Poisson processes. Electronic research announcements of the American Mathematical Society, Tome 03 (1997), pp. 110-113. doi: 10.1090/S1079-6762-97-00033-4
[1] , , , , , , , , Dynamical systems. II 1989
[2] Poisson processes 1993
Cité par Sources :