A complete Vinogradov 3-primes theorem under the Riemann hypothesis
Electronic research announcements of the American Mathematical Society, Tome 03 (1997), pp. 99-104.

Voir la notice de l'article provenant de la source American Mathematical Society

We outline a proof that if the Generalized Riemann Hypothesis holds, then every odd number above $5$ is a sum of three prime numbers. The proof involves an asymptotic theorem covering all but a finite number of cases, an intermediate lemma, and an extensive computation.
DOI : 10.1090/S1079-6762-97-00031-0

Deshouillers, J.-M. 1 ; Effinger, G. 2 ; te Riele, H. 3 ; Zinoviev, D. 4

1 Mathematiques Stochastiques, UMR 9936 CNRS-U.Bordeaux 1, U.Victor Segalen Bordeaux 2, F33076 Bordeaux Cedex, France
2 Department of Mathematics and Computer Science, Skidmore College, Saratoga Springs, NY 12866
3 Centre for Mathematics and Computer Science, P.O. Box 4079, 1009 AB Amsterdam, The Netherlands
4 Memotec Communications, Inc., 600 Rue McCaffrey, Montreal, QC, H4T1N1, Canada
@article{ERAAMS_1997_03_a14,
     author = {Deshouillers, J.-M. and Effinger, G. and te Riele, H. and Zinoviev, D.},
     title = {A complete {Vinogradov} 3-primes theorem under the {Riemann} hypothesis},
     journal = {Electronic research announcements of the American Mathematical Society},
     pages = {99--104},
     publisher = {mathdoc},
     volume = {03},
     year = {1997},
     doi = {10.1090/S1079-6762-97-00031-0},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-97-00031-0/}
}
TY  - JOUR
AU  - Deshouillers, J.-M.
AU  - Effinger, G.
AU  - te Riele, H.
AU  - Zinoviev, D.
TI  - A complete Vinogradov 3-primes theorem under the Riemann hypothesis
JO  - Electronic research announcements of the American Mathematical Society
PY  - 1997
SP  - 99
EP  - 104
VL  - 03
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-97-00031-0/
DO  - 10.1090/S1079-6762-97-00031-0
ID  - ERAAMS_1997_03_a14
ER  - 
%0 Journal Article
%A Deshouillers, J.-M.
%A Effinger, G.
%A te Riele, H.
%A Zinoviev, D.
%T A complete Vinogradov 3-primes theorem under the Riemann hypothesis
%J Electronic research announcements of the American Mathematical Society
%D 1997
%P 99-104
%V 03
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-97-00031-0/
%R 10.1090/S1079-6762-97-00031-0
%F ERAAMS_1997_03_a14
Deshouillers, J.-M.; Effinger, G.; te Riele, H.; Zinoviev, D. A complete Vinogradov 3-primes theorem under the Riemann hypothesis. Electronic research announcements of the American Mathematical Society, Tome 03 (1997), pp. 99-104. doi : 10.1090/S1079-6762-97-00031-0. http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-97-00031-0/

[1] Trudy tret′ego vsesoyuznogo matematicheskogo sЪezda, Moskva, iyun′-iyul′1956. Tom 1. Sektsionnye doklady 1956 238

[2] Chen, Jing Run, Wang, Tian Ze On the Goldbach problem Acta Math. Sinica 1989 702 718

[3] Granville, A., Van De Lune, J., Te Riele, H. J. J. Checking the Goldbach conjecture on a vector computer 1989 423 433

[4] Ivić, Aleksandar The Riemann zeta-function 1985

[5] Jaeschke, Gerhard On strong pseudoprimes to several bases Math. Comp. 1993 915 926

[6] Karatsuba, Anatolij A. Basic analytic number theory 1993

[7] Collar, A. R. On the reciprocation of certain matrices Proc. Roy. Soc. Edinburgh 1939 195 206

[8] Ribenboim, Paulo The book of prime number records 1988

[9] Rosser, J. Barkley, Schoenfeld, Lowell Sharper bounds for the Chebyshev functions 𝜃(𝑥) and 𝜓(𝑥) Math. Comp. 1975 243 269

[10] Sinisalo, Matti K. Checking the Goldbach conjecture up to 4⋅10¹¹ Math. Comp. 1993 931 934

Cité par Sources :