Prevalence of non-Lipschitz Anosov foliations
Electronic research announcements of the American Mathematical Society, Tome 03 (1997), pp. 93-98.

Voir la notice de l'article provenant de la source American Mathematical Society

We give sharp regularity results for the invariant subbundles of hyperbolic dynamical systems and give open dense sets of codimension one systems where this regularity is not exceeded as well as open dense sets of symplectic, geodesic, and codimension one systems where the analogous regularity results of Pugh, Shub, and Wilkinson are optimal. We produce open sets of symplectic Anosov diffeomorphisms and flows with low transverse Hölder regularity of the invariant foliations almost everywhere. Prevalence of low regularity of conjugacies on large sets is a corollary. We also establish a new connection between the transverse regularity of foliations and their tangent subbundles.
DOI : 10.1090/S1079-6762-97-00030-9

Hasselblatt, Boris 1 ; Wilkinson, Amie 2

1 Department of Mathematics Tufts University Medford, MA 02155-5597
2 Department of Mathematics Northwestern University Evanston, IL 60208-2730
@article{ERAAMS_1997_03_a13,
     author = {Hasselblatt, Boris and Wilkinson, Amie},
     title = {Prevalence of {non-Lipschitz} {Anosov} foliations},
     journal = {Electronic research announcements of the American Mathematical Society},
     pages = {93--98},
     publisher = {mathdoc},
     volume = {03},
     year = {1997},
     doi = {10.1090/S1079-6762-97-00030-9},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-97-00030-9/}
}
TY  - JOUR
AU  - Hasselblatt, Boris
AU  - Wilkinson, Amie
TI  - Prevalence of non-Lipschitz Anosov foliations
JO  - Electronic research announcements of the American Mathematical Society
PY  - 1997
SP  - 93
EP  - 98
VL  - 03
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-97-00030-9/
DO  - 10.1090/S1079-6762-97-00030-9
ID  - ERAAMS_1997_03_a13
ER  - 
%0 Journal Article
%A Hasselblatt, Boris
%A Wilkinson, Amie
%T Prevalence of non-Lipschitz Anosov foliations
%J Electronic research announcements of the American Mathematical Society
%D 1997
%P 93-98
%V 03
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-97-00030-9/
%R 10.1090/S1079-6762-97-00030-9
%F ERAAMS_1997_03_a13
Hasselblatt, Boris; Wilkinson, Amie. Prevalence of non-Lipschitz Anosov foliations. Electronic research announcements of the American Mathematical Society, Tome 03 (1997), pp. 93-98. doi : 10.1090/S1079-6762-97-00030-9. http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-97-00030-9/

[1] Anosov, D. V. Geodesic flows on closed Riemannian manifolds of negative curvature Trudy Mat. Inst. Steklov. 1967 209

[2] Anosov, D. V. Tangential fields of transversal foliations in 𝑈-systems Mat. Zametki 1967 539 548

[3] Besson, Gérard, Courtois, Gilles, Gallot, Sylvestre Minimal entropy and Mostow’s rigidity theorems Ergodic Theory Dynam. Systems 1996 623 649

[4] Fenichel, Neil Asymptotic stability with rate conditions Indiana Univ. Math. J. 1973/74 1109 1137

[5] Grayson, Matthew, Pugh, Charles, Shub, Michael Stably ergodic diffeomorphisms Ann. of Math. (2) 1994 295 329

[6] Green, Leon W. The generalized geodesic flow Duke Math. J. 1974

[7] Hasselblatt, Boris Regularity of the Anosov splitting and of horospheric foliations Ergodic Theory Dynam. Systems 1994 645 666

[8] Hasselblatt, Boris Horospheric foliations and relative pinching J. Differential Geom. 1994 57 63

[9] Hasselblatt, Boris Periodic bunching and invariant foliations Math. Res. Lett. 1994 597 600

[10] Hirsch, M. W., Pugh, C. C., Shub, M. Invariant manifolds 1977

[11] Hurder, S., Katok, A. Differentiability, rigidity and Godbillon-Vey classes for Anosov flows Inst. Hautes Études Sci. Publ. Math. 1990

[12] Katok, Anatole, Hasselblatt, Boris Introduction to the modern theory of dynamical systems 1995

[13] De La Llave, R., Moriyón, R. Invariants for smooth conjugacy of hyperbolic dynamical systems. IV Comm. Math. Phys. 1988 185 192

[14] Newhouse, S. E. On codimension one Anosov diffeomorphisms Amer. J. Math. 1970 761 770

[15] Pesin, Ja. B. The existence of invariant foliations for a diffeomorphism of a smooth manifold Mat. Sb. (N.S.) 1973

[16] Schmeling, J., Siegmund-Schultze, Ra. Hölder continuity of the holonomy maps for hyperbolic basic sets. I 1992 174 191

Cité par Sources :