Voir la notice de l'article provenant de la source American Mathematical Society
Hasselblatt, Boris 1 ; Wilkinson, Amie 2
@article{ERAAMS_1997_03_a13, author = {Hasselblatt, Boris and Wilkinson, Amie}, title = {Prevalence of {non-Lipschitz} {Anosov} foliations}, journal = {Electronic research announcements of the American Mathematical Society}, pages = {93--98}, publisher = {mathdoc}, volume = {03}, year = {1997}, doi = {10.1090/S1079-6762-97-00030-9}, url = {http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-97-00030-9/} }
TY - JOUR AU - Hasselblatt, Boris AU - Wilkinson, Amie TI - Prevalence of non-Lipschitz Anosov foliations JO - Electronic research announcements of the American Mathematical Society PY - 1997 SP - 93 EP - 98 VL - 03 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-97-00030-9/ DO - 10.1090/S1079-6762-97-00030-9 ID - ERAAMS_1997_03_a13 ER -
%0 Journal Article %A Hasselblatt, Boris %A Wilkinson, Amie %T Prevalence of non-Lipschitz Anosov foliations %J Electronic research announcements of the American Mathematical Society %D 1997 %P 93-98 %V 03 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-97-00030-9/ %R 10.1090/S1079-6762-97-00030-9 %F ERAAMS_1997_03_a13
Hasselblatt, Boris; Wilkinson, Amie. Prevalence of non-Lipschitz Anosov foliations. Electronic research announcements of the American Mathematical Society, Tome 03 (1997), pp. 93-98. doi : 10.1090/S1079-6762-97-00030-9. http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-97-00030-9/
[1] Geodesic flows on closed Riemannian manifolds of negative curvature Trudy Mat. Inst. Steklov. 1967 209
[2] Tangential fields of transversal foliations in 𝑈-systems Mat. Zametki 1967 539 548
[3] Minimal entropy and Mostow’s rigidity theorems Ergodic Theory Dynam. Systems 1996 623 649
, ,[4] Asymptotic stability with rate conditions Indiana Univ. Math. J. 1973/74 1109 1137
[5] Stably ergodic diffeomorphisms Ann. of Math. (2) 1994 295 329
, ,[6] The generalized geodesic flow Duke Math. J. 1974
[7] Regularity of the Anosov splitting and of horospheric foliations Ergodic Theory Dynam. Systems 1994 645 666
[8] Horospheric foliations and relative pinching J. Differential Geom. 1994 57 63
[9] Periodic bunching and invariant foliations Math. Res. Lett. 1994 597 600
[10] Invariant manifolds 1977
, ,[11] Differentiability, rigidity and Godbillon-Vey classes for Anosov flows Inst. Hautes Études Sci. Publ. Math. 1990
,[12] Introduction to the modern theory of dynamical systems 1995
,[13] Invariants for smooth conjugacy of hyperbolic dynamical systems. IV Comm. Math. Phys. 1988 185 192
,[14] On codimension one Anosov diffeomorphisms Amer. J. Math. 1970 761 770
[15] The existence of invariant foliations for a diffeomorphism of a smooth manifold Mat. Sb. (N.S.) 1973
[16] Hölder continuity of the holonomy maps for hyperbolic basic sets. I 1992 174 191
,Cité par Sources :