Proof of Conway’s lost cosmological theorem
Electronic research announcements of the American Mathematical Society, Tome 03 (1997), pp. 78-82.

Voir la notice de l'article provenant de la source American Mathematical Society

John Horton Conway’s Cosmological Theorem about sequences like 1, 11, 21, 1211, 111221, 312211,…, for which no extant proof existed, is given a new proof, this time hopefully for good.
DOI : 10.1090/S1079-6762-97-00026-7

Ekhad, Shalosh 1 ; Zeilberger, Doron 1

1 Department of Mathematics, Temple University, Philadelphia, PA 19122
@article{ERAAMS_1997_03_a10,
     author = {Ekhad, Shalosh and Zeilberger, Doron},
     title = {Proof of {Conway{\textquoteright}s} lost cosmological theorem},
     journal = {Electronic research announcements of the American Mathematical Society},
     pages = {78--82},
     publisher = {mathdoc},
     volume = {03},
     year = {1997},
     doi = {10.1090/S1079-6762-97-00026-7},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-97-00026-7/}
}
TY  - JOUR
AU  - Ekhad, Shalosh
AU  - Zeilberger, Doron
TI  - Proof of Conway’s lost cosmological theorem
JO  - Electronic research announcements of the American Mathematical Society
PY  - 1997
SP  - 78
EP  - 82
VL  - 03
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-97-00026-7/
DO  - 10.1090/S1079-6762-97-00026-7
ID  - ERAAMS_1997_03_a10
ER  - 
%0 Journal Article
%A Ekhad, Shalosh
%A Zeilberger, Doron
%T Proof of Conway’s lost cosmological theorem
%J Electronic research announcements of the American Mathematical Society
%D 1997
%P 78-82
%V 03
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-97-00026-7/
%R 10.1090/S1079-6762-97-00026-7
%F ERAAMS_1997_03_a10
Ekhad, Shalosh; Zeilberger, Doron. Proof of Conway’s lost cosmological theorem. Electronic research announcements of the American Mathematical Society, Tome 03 (1997), pp. 78-82. doi : 10.1090/S1079-6762-97-00026-7. http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-97-00026-7/

[1] Epstein, Leo F. A function related to the series for 𝑒^{𝑒^{𝑥}} J. Math. Phys. Mass. Inst. Tech. 1939 153 173

[2] Open problems in communication and computation 1987

[3] Sloane, N. J. A., Plouffe, Simon The encyclopedia of integer sequences 1995

[4] Vardi, Ilan Computational recreations in Mathematica 1991

Cité par Sources :