Kaliman, S. 1 ; Koras, M. 2 ; Makar-Limanov, L. 3 ; Russell, P. 4
@article{10_1090_S1079_6762_97_00025_5,
author = {Kaliman, S. and Koras, M. and Makar-Limanov, L. and Russell, P.},
title = {\ensuremath{\mathbb{C}}*-actions on {\ensuremath{\mathbb{C}}{\textthreesuperior}} are linearizable},
journal = {Electronic research announcements of the American Mathematical Society},
pages = {63--71},
year = {1997},
volume = {03},
doi = {10.1090/S1079-6762-97-00025-5},
url = {http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-97-00025-5/}
}
TY - JOUR AU - Kaliman, S. AU - Koras, M. AU - Makar-Limanov, L. AU - Russell, P. TI - ℂ*-actions on ℂ³ are linearizable JO - Electronic research announcements of the American Mathematical Society PY - 1997 SP - 63 EP - 71 VL - 03 UR - http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-97-00025-5/ DO - 10.1090/S1079-6762-97-00025-5 ID - 10_1090_S1079_6762_97_00025_5 ER -
%0 Journal Article %A Kaliman, S. %A Koras, M. %A Makar-Limanov, L. %A Russell, P. %T ℂ*-actions on ℂ³ are linearizable %J Electronic research announcements of the American Mathematical Society %D 1997 %P 63-71 %V 03 %U http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-97-00025-5/ %R 10.1090/S1079-6762-97-00025-5 %F 10_1090_S1079_6762_97_00025_5
Kaliman, S.; Koras, M.; Makar-Limanov, L.; Russell, P. ℂ*-actions on ℂ³ are linearizable. Electronic research announcements of the American Mathematical Society, Tome 03 (1997), pp. 63-71. doi: 10.1090/S1079-6762-97-00025-5
[1] , Embeddings of the line in the plane J. Reine Angew. Math. 1975 148 166
[2] Remarks on the action of an algebraic torus on 𝑘ⁿ Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 1966 177 181
[3] Singularities and topology of hypersurfaces 1992
[4] , , A note on locally nilpotent derivations J. Pure Appl. Algebra 1992 45 50
[5] A characterization of 𝐀²/𝐙ₐ Compositio Math. 1993 241 267
[6] Uniformization of complex surfaces 1990 313 394
[7] , On linearizing algebraic torus actions J. Pure Appl. Algebra 1982 243 250
[8] , Semisimple group actions on the three-dimensional affine space are linear Comment. Math. Helv. 1985 466 479
[9] , 𝐺ₘ-actions on 𝐴³ 1986 269 276
[10] , On linearizing “good” 𝐶*-actions on 𝐶³ 1989 93 102
[11] The maximal number of quotient singularities on surfaces with given numerical invariants Math. Ann. 1984 159 171
[12] , Noncomplete algebraic surfaces with logarithmic Kodaira dimension -∞ and with nonconnected boundaries at infinity Japan. J. Math. (N.S.) 1984 195 242
[13] Propriétés topologiques des polynômes de deux variables complexes, et automorphismes algébriques de l’espace 𝐶² J. Math. Soc. Japan 1974 241 257
Cité par Sources :