Classification of compact homogeneous spaces with invariant symplectic structures
Electronic research announcements of the American Mathematical Society, Tome 03 (1997), pp. 52-54.

Voir la notice de l'article provenant de la source American Mathematical Society

We solve a longstanding problem of classification of compact homogeneous spaces with invariant symplectic structures. We also give a splitting conjecture on compact homogeneous spaces with symplectic structures (which are not necessarily invariant under the group action) that makes the classification of this kind of manifolds possible.
DOI : 10.1090/S1079-6762-97-00023-1

Guan, Daniel 1

1 Department of Mathematics, Princeton University, Princeton, NJ 08544
@article{ERAAMS_1997_03_a6,
     author = {Guan, Daniel},
     title = {Classification of compact homogeneous spaces with invariant symplectic structures},
     journal = {Electronic research announcements of the American Mathematical Society},
     pages = {52--54},
     publisher = {mathdoc},
     volume = {03},
     year = {1997},
     doi = {10.1090/S1079-6762-97-00023-1},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-97-00023-1/}
}
TY  - JOUR
AU  - Guan, Daniel
TI  - Classification of compact homogeneous spaces with invariant symplectic structures
JO  - Electronic research announcements of the American Mathematical Society
PY  - 1997
SP  - 52
EP  - 54
VL  - 03
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-97-00023-1/
DO  - 10.1090/S1079-6762-97-00023-1
ID  - ERAAMS_1997_03_a6
ER  - 
%0 Journal Article
%A Guan, Daniel
%T Classification of compact homogeneous spaces with invariant symplectic structures
%J Electronic research announcements of the American Mathematical Society
%D 1997
%P 52-54
%V 03
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-97-00023-1/
%R 10.1090/S1079-6762-97-00023-1
%F ERAAMS_1997_03_a6
Guan, Daniel. Classification of compact homogeneous spaces with invariant symplectic structures. Electronic research announcements of the American Mathematical Society, Tome 03 (1997), pp. 52-54. doi : 10.1090/S1079-6762-97-00023-1. http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-97-00023-1/

[1] Borel, A., Remmert, R. Über kompakte homogene Kählersche Mannigfaltigkeiten Math. Ann. 1961/62 429 439

[2] Dorfmeister, Josef, Guan, Zhuang Dan Classification of compact homogeneous pseudo-Kähler manifolds Comment. Math. Helv. 1992 499 513

[3] Kobayashi, Shoshichi Differential geometry of complex vector bundles 1987

[4] Maclane, Saunders, Schilling, O. F. G. Infinite number fields with Noether ideal theories Amer. J. Math. 1939 771 782

[5] Tits, J. Espaces homogènes complexes compacts Comment. Math. Helv. 1962/63 111 120

Cité par Sources :