Polynomials with integral coefficients, equivalent to a given polynomial
Electronic research announcements of the American Mathematical Society, Tome 03 (1997), pp. 17-27.

Voir la notice de l'article provenant de la source American Mathematical Society

Let $f(x_{0},\dots ,x_{n})$ be a homogeneous polynomial with rational coefficients. The aim of this paper is to find a polynomial with integral coefficients $F(x_{0},\dots ,x_{n})$ which is “equivalent" to $f$ and as “simple" as possible. The principal ingredient of the proof is to connect this question with the geometric invariant theory of polynomials. Applications to binary forms, class numbers, quadratic forms and to families of cubic surfaces are given at the end.
DOI : 10.1090/S1079-6762-97-00019-X

Kollár, János 1

1 University of Utah, Salt Lake City, UT 84112
@article{ERAAMS_1997_03_a2,
     author = {Koll\'ar, J\'anos},
     title = {Polynomials with integral coefficients, equivalent to a given polynomial},
     journal = {Electronic research announcements of the American Mathematical Society},
     pages = {17--27},
     publisher = {mathdoc},
     volume = {03},
     year = {1997},
     doi = {10.1090/S1079-6762-97-00019-X},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-97-00019-X/}
}
TY  - JOUR
AU  - Kollár, János
TI  - Polynomials with integral coefficients, equivalent to a given polynomial
JO  - Electronic research announcements of the American Mathematical Society
PY  - 1997
SP  - 17
EP  - 27
VL  - 03
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-97-00019-X/
DO  - 10.1090/S1079-6762-97-00019-X
ID  - ERAAMS_1997_03_a2
ER  - 
%0 Journal Article
%A Kollár, János
%T Polynomials with integral coefficients, equivalent to a given polynomial
%J Electronic research announcements of the American Mathematical Society
%D 1997
%P 17-27
%V 03
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-97-00019-X/
%R 10.1090/S1079-6762-97-00019-X
%F ERAAMS_1997_03_a2
Kollár, János. Polynomials with integral coefficients, equivalent to a given polynomial. Electronic research announcements of the American Mathematical Society, Tome 03 (1997), pp. 17-27. doi : 10.1090/S1079-6762-97-00019-X. http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-97-00019-X/

[1] Hebroni, P. Sur les inverses des éléments dérivables dans un anneau abstrait C. R. Acad. Sci. Paris 1939 285 287

[2] Fröhlich, A., Taylor, M. J. Algebraic number theory 1993

[3] Humphreys, James E. Arithmetic groups 1980

[4] Laxton, R. R., Lewis, D. J. Forms of degrees 7 and 11 over 𝔭-adic fields 1965 16 21

[5] Lewis, D. J. Diophantine problems: solved and unsolved 1989 103 121

[6] Macaulay, F. S. The algebraic theory of modular systems 1994

[7] Mumford, David, Fogarty, John Geometric invariant theory 1982

[8] Silverman, Joseph H. The arithmetic of elliptic curves 1986

[9] Maclane, Saunders Steinitz field towers for modular fields Trans. Amer. Math. Soc. 1939 23 45

[10] Horn, J. Über eine hypergeometrische Funktion zweier Veränderlichen Monatsh. Math. Phys. 1939 359 379

Cité par Sources :