Lower and upper bounds for the splitting of separatrices of the pendulum under a fast quasiperiodic forcing
Electronic research announcements of the American Mathematical Society, Tome 03 (1997), pp. 1-10.

Voir la notice de l'article provenant de la source American Mathematical Society

Quasiperiodic perturbations with two frequencies $(1/\varepsilon ,\gamma /\varepsilon )$ of a pendulum are considered, where $\gamma$ is the golden mean number. We study the splitting of the three-dimensional invariant manifolds associated to a two-dimensional invariant torus in a neighbourhood of the saddle point of the pendulum. Provided that some of the Fourier coefficients of the perturbation (the ones associated to Fibonacci numbers) are separated from zero, it is proved that the invariant manifolds split for $\varepsilon$ small enough. The value of the splitting, that turns out to be $\mathrm {O} \left (\exp \left (-\mathrm {const}/\sqrt {\varepsilon }\right )\right )$, is correctly predicted by the Melnikov function.
DOI : 10.1090/S1079-6762-97-00017-6

Delshams, Amadeu 1 ; Gelfreich, Vassili 2, 3 ; Jorba, Àngel 1 ; Seara, Tere 1

1 Departament de Matemàtica Aplicada I Universitat Politècnica de Catalunya Diagonal 647, 08028 Barcelona, Spain
2 Departament de Matemàtica Aplicada i Anàlisi Universitat de Barcelona Gran via 585, 08007 Barcelona, Spain
3 Chair of Applied Mathematics St.Petersburg Academy of Aerospace Instrumentation Bolshaya Morskaya 67, 190000, St. Petersburg, Russia
@article{ERAAMS_1997_03_a0,
     author = {Delshams, Amadeu and Gelfreich, Vassili and Jorba, \`Angel and Seara, Tere},
     title = {Lower and upper bounds for the splitting of separatrices of the pendulum under a fast quasiperiodic forcing},
     journal = {Electronic research announcements of the American Mathematical Society},
     pages = {1--10},
     publisher = {mathdoc},
     volume = {03},
     year = {1997},
     doi = {10.1090/S1079-6762-97-00017-6},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-97-00017-6/}
}
TY  - JOUR
AU  - Delshams, Amadeu
AU  - Gelfreich, Vassili
AU  - Jorba, Àngel
AU  - Seara, Tere
TI  - Lower and upper bounds for the splitting of separatrices of the pendulum under a fast quasiperiodic forcing
JO  - Electronic research announcements of the American Mathematical Society
PY  - 1997
SP  - 1
EP  - 10
VL  - 03
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-97-00017-6/
DO  - 10.1090/S1079-6762-97-00017-6
ID  - ERAAMS_1997_03_a0
ER  - 
%0 Journal Article
%A Delshams, Amadeu
%A Gelfreich, Vassili
%A Jorba, Àngel
%A Seara, Tere
%T Lower and upper bounds for the splitting of separatrices of the pendulum under a fast quasiperiodic forcing
%J Electronic research announcements of the American Mathematical Society
%D 1997
%P 1-10
%V 03
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-97-00017-6/
%R 10.1090/S1079-6762-97-00017-6
%F ERAAMS_1997_03_a0
Delshams, Amadeu; Gelfreich, Vassili; Jorba, Àngel; Seara, Tere. Lower and upper bounds for the splitting of separatrices of the pendulum under a fast quasiperiodic forcing. Electronic research announcements of the American Mathematical Society, Tome 03 (1997), pp. 1-10. doi : 10.1090/S1079-6762-97-00017-6. http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-97-00017-6/

[1] Chierchia, L., Gallavotti, G. Drift and diffusion in phase space Ann. Inst. H. Poincaré Phys. Théor. 1994 144

[2] Delshams, Amadeo, Seara, Teresa M. An asymptotic expression for the splitting of separatrices of the rapidly forced pendulum Comm. Math. Phys. 1992 433 463

[3] Gallavotti, Giovanni Twistless KAM tori, quasi flat homoclinic intersections, and other cancellations in the perturbation series of certain completely integrable Hamiltonian systems. A review Rev. Math. Phys. 1994 343 411

[4] Gelfreich, V. G. Separatrices splitting for the rapidly forced pendulum 1994 47 67

[5] Neĭshtadt, A. I. The separation of motions in systems with rapidly rotating phase Prikl. Mat. Mekh. 1984 197 204

[6] Simó, Carles Averaging under fast quasiperiodic forcing 1994 13 34

Cité par Sources :