Nonstationary normal forms and rigidity of group actions
Electronic research announcements of the American Mathematical Society, Tome 02 (1996) no. 3, pp. 124-133.

Voir la notice de l'article provenant de la source American Mathematical Society

We develop a proper “nonstationary” generalization of the classical theory of normal forms for local contractions. In particular, it is shown under some assumptions that the centralizer of a contraction in an extension is a particular Lie group, determined by the spectrum of the linear part of the contractions. We show that most homogeneous Anosov actions of higher rank abelian groups are locally $C^{\infty }$ rigid (up to an automorphism). This result is the main part in the proof of local $C^{\infty }$ rigidity for two very different types of algebraic actions of irreducible lattices in higher rank semisimple Lie groups: (i) the actions of cocompact lattices on Furstenberg boundaries, in particular projective spaces, and (ii) the actions by automorphisms of tori and nilmanifolds. The main new technical ingredient in the proofs is the centralizer result mentioned above.
DOI : 10.1090/S1079-6762-96-00016-9

Katok, A. 1 ; Spatzier, R. 2

1 Department of Mathematics, The Pennsylvania State University, University Park, PA 16802
2 Department of Mathematics, University of Michigan, Ann Arbor, MI 48103
@article{ERAAMS_1996_02_3_a2,
     author = {Katok, A. and Spatzier, R.},
     title = {Nonstationary normal forms and rigidity of group actions},
     journal = {Electronic research announcements of the American Mathematical Society},
     pages = {124--133},
     publisher = {mathdoc},
     volume = {02},
     number = {3},
     year = {1996},
     doi = {10.1090/S1079-6762-96-00016-9},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-96-00016-9/}
}
TY  - JOUR
AU  - Katok, A.
AU  - Spatzier, R.
TI  - Nonstationary normal forms and rigidity of group actions
JO  - Electronic research announcements of the American Mathematical Society
PY  - 1996
SP  - 124
EP  - 133
VL  - 02
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-96-00016-9/
DO  - 10.1090/S1079-6762-96-00016-9
ID  - ERAAMS_1996_02_3_a2
ER  - 
%0 Journal Article
%A Katok, A.
%A Spatzier, R.
%T Nonstationary normal forms and rigidity of group actions
%J Electronic research announcements of the American Mathematical Society
%D 1996
%P 124-133
%V 02
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-96-00016-9/
%R 10.1090/S1079-6762-96-00016-9
%F ERAAMS_1996_02_3_a2
Katok, A.; Spatzier, R. Nonstationary normal forms and rigidity of group actions. Electronic research announcements of the American Mathematical Society, Tome 02 (1996) no. 3, pp. 124-133. doi : 10.1090/S1079-6762-96-00016-9. http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-96-00016-9/

[1] Chen, Kuo-Tsai Equivalence and decomposition of vector fields about an elementary critical point Amer. J. Math. 1963 693 722

[2] Franks, John Anosov diffeomorphisms 1970 61 93

[3] Ghys, Étienne Rigidité différentiable des groupes fuchsiens Inst. Hautes Études Sci. Publ. Math. 1993

[4] Hirsch, M. W., Pugh, C. C., Shub, M. Invariant manifolds 1977

[5] Katok, Anatole, Hasselblatt, Boris Introduction to the modern theory of dynamical systems 1995

[6] Katok, A., Lewis, J. Local rigidity for certain groups of toral automorphisms Israel J. Math. 1991 203 241

[7] Katok, Anatole, Spatzier, Ralf J. First cohomology of Anosov actions of higher rank abelian groups and applications to rigidity Inst. Hautes Études Sci. Publ. Math. 1994 131 156

[8] Margulis, G. A. Discrete subgroups of semisimple Lie groups 1991

[9] Manning, Anthony There are no new Anosov diffeomorphisms on tori Amer. J. Math. 1974 422 429

[10] Parry, William Ergodic properties of affine transformations and flows on nilmanifolds Amer. J. Math. 1969 757 771

[11] Sternberg, Shlomo Local contractions and a theorem of Poincaré Amer. J. Math. 1957 809 824

[12] Yue, Cheng Bo Smooth rigidity of rank-1 lattice actions on the sphere at infinity Math. Res. Lett. 1995 327 338

[13] Zimmer, Robert J. Ergodic theory and semisimple groups 1984

Cité par Sources :