The Equichordal Point Problem
Electronic research announcements of the American Mathematical Society, Tome 02 (1996) no. 3, pp. 108-123.

Voir la notice de l'article provenant de la source American Mathematical Society

If $C$ is a Jordan curve on the plane and $P, Q\in C$, then the segment $\overline {PQ}$ is called a chord of the curve $C$. A point inside the curve is called equichordal if every two chords through this point have the same length. Fujiwara in 1916 and independently Blaschke, Rothe and Weitzenböck in 1917 asked whether there exists a curve with two distinct equichordal points $O_1$ and $O_2$. This problem has been fully solved in the negative by the author of this announcement just recently. The proof (published elsewhere) reduces the question to that of existence of heteroclinic connections for multi-valued, algebraic mappings. In the current paper we outline the methods used in the course of the proof, discuss their further applications and formulate new problems.
DOI : 10.1090/S1079-6762-96-00015-7

Rychlik, Marek 1

1 Department of Mathematics, University of Arizona, Tucson, AZ 85721
@article{ERAAMS_1996_02_3_a1,
     author = {Rychlik, Marek},
     title = {The {Equichordal} {Point} {Problem}},
     journal = {Electronic research announcements of the American Mathematical Society},
     pages = {108--123},
     publisher = {mathdoc},
     volume = {02},
     number = {3},
     year = {1996},
     doi = {10.1090/S1079-6762-96-00015-7},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-96-00015-7/}
}
TY  - JOUR
AU  - Rychlik, Marek
TI  - The Equichordal Point Problem
JO  - Electronic research announcements of the American Mathematical Society
PY  - 1996
SP  - 108
EP  - 123
VL  - 02
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-96-00015-7/
DO  - 10.1090/S1079-6762-96-00015-7
ID  - ERAAMS_1996_02_3_a1
ER  - 
%0 Journal Article
%A Rychlik, Marek
%T The Equichordal Point Problem
%J Electronic research announcements of the American Mathematical Society
%D 1996
%P 108-123
%V 02
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-96-00015-7/
%R 10.1090/S1079-6762-96-00015-7
%F ERAAMS_1996_02_3_a1
Rychlik, Marek. The Equichordal Point Problem. Electronic research announcements of the American Mathematical Society, Tome 02 (1996) no. 3, pp. 108-123. doi : 10.1090/S1079-6762-96-00015-7. http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-96-00015-7/

[1] Ehrhart, E. Un ovale à deux points isocordes? Enseign. Math. (2) 1967 119 124

[2] Gelfreich, V. G., Lazutkin, V. F., Svanidze, N. V. A refined formula for the separatrix splitting for the standard map Phys. D 1994 82 101

[3] Michelacci, G., Volčič, A. A better bound for the excentricities not admitting the equichordal body Arch. Math. (Basel) 1990 599 609

[4] Schäfke, R., Volkmer, H. Asymptotic analysis of the equichordal problem J. Reine Angew. Math. 1992 9 60

[5] Ushiki, Shigehiro Sur les liasons-cols des systèmes dynamiques analytiques C. R. Acad. Sci. Paris Sér. A-B 1980

[6] Wirsing, Eduard Zur Analytizität von Doppelspeichenkurven Arch. Math. 1958 300 307

Cité par Sources :