On the existence of positive solutions of Yamabe-type equations on the Heisenberg group
Electronic research announcements of the American Mathematical Society, Tome 02 (1996) no. 3, pp. 101-107.

Voir la notice de l'article provenant de la source American Mathematical Society

We study nonexistence, existence and uniqueness of positive solutions of the equation $\Delta _{H^n}u+a(x)u-b(x)u^\sigma =0$ with $\sigma >1$ on the Heisenberg group $H^n$. Our results hold, with essentially no changes, also for the Euclidean version of the above equation. Even in this case they appear to be new.
DOI : 10.1090/S1079-6762-96-00014-5

Brandolini, L. 1 ; Rigoli, M. 1 ; Setti, A. 1

1 Dipartimento di Matematica, Via Saldini 50, 20133 Milano, Italy
@article{ERAAMS_1996_02_3_a0,
     author = {Brandolini, L. and Rigoli, M. and Setti, A.},
     title = {On the existence of positive solutions of {Yamabe-type} equations on the {Heisenberg} group},
     journal = {Electronic research announcements of the American Mathematical Society},
     pages = {101--107},
     publisher = {mathdoc},
     volume = {02},
     number = {3},
     year = {1996},
     doi = {10.1090/S1079-6762-96-00014-5},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-96-00014-5/}
}
TY  - JOUR
AU  - Brandolini, L.
AU  - Rigoli, M.
AU  - Setti, A.
TI  - On the existence of positive solutions of Yamabe-type equations on the Heisenberg group
JO  - Electronic research announcements of the American Mathematical Society
PY  - 1996
SP  - 101
EP  - 107
VL  - 02
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-96-00014-5/
DO  - 10.1090/S1079-6762-96-00014-5
ID  - ERAAMS_1996_02_3_a0
ER  - 
%0 Journal Article
%A Brandolini, L.
%A Rigoli, M.
%A Setti, A.
%T On the existence of positive solutions of Yamabe-type equations on the Heisenberg group
%J Electronic research announcements of the American Mathematical Society
%D 1996
%P 101-107
%V 02
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-96-00014-5/
%R 10.1090/S1079-6762-96-00014-5
%F ERAAMS_1996_02_3_a0
Brandolini, L.; Rigoli, M.; Setti, A. On the existence of positive solutions of Yamabe-type equations on the Heisenberg group. Electronic research announcements of the American Mathematical Society, Tome 02 (1996) no. 3, pp. 101-107. doi : 10.1090/S1079-6762-96-00014-5. http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-96-00014-5/

[1] Cheng, Kuo-Shung, Lin, Jenn-Tsann On the elliptic equations Δ𝑢 Trans. Amer. Math. Soc. 1987 639 668

[2] Cheng, Kuo-Shung, Ni, Wei-Ming On the structure of the conformal scalar curvature equation on 𝑅ⁿ Indiana Univ. Math. J. 1992 261 278

[3] Hörmander, Lars Hypoelliptic second order differential equations Acta Math. 1967 147 171

[4] Jerison, David, Lee, John M. A subelliptic, nonlinear eigenvalue problem and scalar curvature on CR manifolds 1984 57 63

[5] Jerison, David, Lee, John M. The Yamabe problem on CR manifolds J. Differential Geom. 1987 167 197

[6] Jerison, David, Lee, John M. Extremals for the Sobolev inequality on the Heisenberg group and the CR Yamabe problem J. Amer. Math. Soc. 1988 1 13

[7] Ni, Wei Ming On the elliptic equation Δ𝑢+𝐾(𝑥)𝑢^{(𝑛+2)/(𝑛-2)} Indiana Univ. Math. J. 1982 493 529

Cité par Sources :