On the cut point conjecture
Electronic research announcements of the American Mathematical Society, Tome 02 (1996) no. 2, pp. 98-100.

Voir la notice de l'article provenant de la source American Mathematical Society

We sketch a proof of the fact that the Gromov boundary of a hyperbolic group does not have a global cut point if it is connected. This implies, by a theorem of Bestvina and Mess, that the boundary is locally connected if it is connected.
DOI : 10.1090/S1079-6762-96-00013-3

Swarup, G. 1

1 The University of Melbourne, Parkville, 3052, Victoria, Australia
@article{ERAAMS_1996_02_2_a3,
     author = {Swarup, G.},
     title = {On the cut point conjecture},
     journal = {Electronic research announcements of the American Mathematical Society},
     pages = {98--100},
     publisher = {mathdoc},
     volume = {02},
     number = {2},
     year = {1996},
     doi = {10.1090/S1079-6762-96-00013-3},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-96-00013-3/}
}
TY  - JOUR
AU  - Swarup, G.
TI  - On the cut point conjecture
JO  - Electronic research announcements of the American Mathematical Society
PY  - 1996
SP  - 98
EP  - 100
VL  - 02
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-96-00013-3/
DO  - 10.1090/S1079-6762-96-00013-3
ID  - ERAAMS_1996_02_2_a3
ER  - 
%0 Journal Article
%A Swarup, G.
%T On the cut point conjecture
%J Electronic research announcements of the American Mathematical Society
%D 1996
%P 98-100
%V 02
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-96-00013-3/
%R 10.1090/S1079-6762-96-00013-3
%F ERAAMS_1996_02_2_a3
Swarup, G. On the cut point conjecture. Electronic research announcements of the American Mathematical Society, Tome 02 (1996) no. 2, pp. 98-100. doi : 10.1090/S1079-6762-96-00013-3. http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-96-00013-3/

[1] Bestvina, Mladen, Feighn, Mark Bounding the complexity of simplicial group actions on trees Invent. Math. 1991 449 469

[2] Bestvina, Mladen, Feighn, Mark Stable actions of groups on real trees Invent. Math. 1995 287 321

[3] Bestvina, Mladen, Mess, Geoffrey The boundary of negatively curved groups J. Amer. Math. Soc. 1991 469 481

Cité par Sources :