Boundary integral methods for harmonic differential forms in Lipschitz domains
Electronic research announcements of the American Mathematical Society, Tome 02 (1996) no. 2, pp. 92-97.

Voir la notice de l'article provenant de la source American Mathematical Society

A layer potential based approach for boundary value problems for harmonic differential forms in nonsmooth domains is developed. This allows a complete and unified treatment of several fundamental problems in potential theory.
DOI : 10.1090/S1079-6762-96-00012-1

Mitrea, Dorina 1 ; Mitrea, Marius 1

1 Department of Mathematics, University of Missouri-Columbia, Columbia, MO 65211
@article{ERAAMS_1996_02_2_a2,
     author = {Mitrea, Dorina and Mitrea, Marius},
     title = {Boundary integral methods for harmonic differential forms in {Lipschitz} domains},
     journal = {Electronic research announcements of the American Mathematical Society},
     pages = {92--97},
     publisher = {mathdoc},
     volume = {02},
     number = {2},
     year = {1996},
     doi = {10.1090/S1079-6762-96-00012-1},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-96-00012-1/}
}
TY  - JOUR
AU  - Mitrea, Dorina
AU  - Mitrea, Marius
TI  - Boundary integral methods for harmonic differential forms in Lipschitz domains
JO  - Electronic research announcements of the American Mathematical Society
PY  - 1996
SP  - 92
EP  - 97
VL  - 02
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-96-00012-1/
DO  - 10.1090/S1079-6762-96-00012-1
ID  - ERAAMS_1996_02_2_a2
ER  - 
%0 Journal Article
%A Mitrea, Dorina
%A Mitrea, Marius
%T Boundary integral methods for harmonic differential forms in Lipschitz domains
%J Electronic research announcements of the American Mathematical Society
%D 1996
%P 92-97
%V 02
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-96-00012-1/
%R 10.1090/S1079-6762-96-00012-1
%F ERAAMS_1996_02_2_a2
Mitrea, Dorina; Mitrea, Marius. Boundary integral methods for harmonic differential forms in Lipschitz domains. Electronic research announcements of the American Mathematical Society, Tome 02 (1996) no. 2, pp. 92-97. doi : 10.1090/S1079-6762-96-00012-1. http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-96-00012-1/

[1] Maclane, Saunders Steinitz field towers for modular fields Trans. Amer. Math. Soc. 1939 23 45

[2] Dahlberg, Björn E. J. Estimates of harmonic measure Arch. Rational Mech. Anal. 1977 275 288

[3] Fabes, E. B., Jodeit, M., Jr., Rivière, N. M. Potential techniques for boundary value problems on 𝐶¹-domains Acta Math. 1978 165 186

[4] Dickson, Leonard Eugene New First Course in the Theory of Equations 1939

[5] Jerison, David S., Kenig, Carlos E. The Neumann problem on Lipschitz domains Bull. Amer. Math. Soc. (N.S.) 1981 203 207

[6] Morrey, Charles B., Jr. Multiple integrals in the calculus of variations 1966

[7] Verchota, Gregory Layer potentials and regularity for the Dirichlet problem for Laplace’s equation in Lipschitz domains J. Funct. Anal. 1984 572 611

Cité par Sources :