Residues and effective Nullstellensatz
Electronic research announcements of the American Mathematical Society, Tome 02 (1996) no. 2, pp. 82-91.

Voir la notice de l'article provenant de la source American Mathematical Society

Let $\mathbf {K}$ be a commutative field; an algorithmic approach to residue symbols defined on a Noetherian $\mathbf {K}$-algebra $\mathbf {R}$ has been developed. It is used to prove an effective Nullstellensatz for polynomials defined over infinite factorial rings $\mathbf {A}$ equipped with a size. This result extends (and slightly improves) the previous work of the authors in the case $\mathbf {A} =\mathbf {Z}$.
DOI : 10.1090/S1079-6762-96-00011-X

Berenstein, Carlos 1 ; Yger, Alain 2

1 Institute for Systems Research, University of Maryland, College Park, MD 20742
2 Laboratoire de Mathématiques Pures, Université Bordeaux Sciences, 33405 Talence, France
@article{ERAAMS_1996_02_2_a1,
     author = {Berenstein, Carlos and Yger, Alain},
     title = {Residues and effective {Nullstellensatz}},
     journal = {Electronic research announcements of the American Mathematical Society},
     pages = {82--91},
     publisher = {mathdoc},
     volume = {02},
     number = {2},
     year = {1996},
     doi = {10.1090/S1079-6762-96-00011-X},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-96-00011-X/}
}
TY  - JOUR
AU  - Berenstein, Carlos
AU  - Yger, Alain
TI  - Residues and effective Nullstellensatz
JO  - Electronic research announcements of the American Mathematical Society
PY  - 1996
SP  - 82
EP  - 91
VL  - 02
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-96-00011-X/
DO  - 10.1090/S1079-6762-96-00011-X
ID  - ERAAMS_1996_02_2_a1
ER  - 
%0 Journal Article
%A Berenstein, Carlos
%A Yger, Alain
%T Residues and effective Nullstellensatz
%J Electronic research announcements of the American Mathematical Society
%D 1996
%P 82-91
%V 02
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-96-00011-X/
%R 10.1090/S1079-6762-96-00011-X
%F ERAAMS_1996_02_2_a1
Berenstein, Carlos; Yger, Alain. Residues and effective Nullstellensatz. Electronic research announcements of the American Mathematical Society, Tome 02 (1996) no. 2, pp. 82-91. doi : 10.1090/S1079-6762-96-00011-X. http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-96-00011-X/

[1] Berenstein, Carlos A., Gay, Roger, Vidras, Alekos, Yger, Alain Residue currents and Bezout identities 1993

[2] Berenstein, Carlos A., Yger, Alain Effective Bezout identities in 𝑄[𝑧₁,⋯,𝑧_{𝑛}] Acta Math. 1991 69 120

[3] Bost, J.-B., Gillet, H., Soulé, C. Heights of projective varieties and positive Green forms J. Amer. Math. Soc. 1994 903 1027

[4] Brownawell, W. Dale Bounds for the degrees in the Nullstellensatz Ann. of Math. (2) 1987 577 591

[5] Caniglia, Léandro, Galligo, André, Heintz, Joos Borne simple exponentielle pour les degrés dans le théorème des zéros sur un corps de caractéristique quelconque C. R. Acad. Sci. Paris Sér. I Math. 1988 255 258

[6] Griffiths, Phillip A. Variations on a theorem of Abel Invent. Math. 1976 321 390

[7] Griffiths, Phillip, Harris, Joseph Principles of algebraic geometry 1978

[8] Hartshorne, Robin Residues and duality 1966

[9] Ji, Shanyu, Kollár, János, Shiffman, Bernard A global Łojasiewicz inequality for algebraic varieties Trans. Amer. Math. Soc. 1992 813 818

[10] Kollár, János Sharp effective Nullstellensatz J. Amer. Math. Soc. 1988 963 975

[11] Kreuzer, Martin, Kunz, Ernst Traces in strict Frobenius algebras and strict complete intersections J. Reine Angew. Math. 1987 181 204

[12] Kunz, E. Über den 𝑛-dimensionalen Residuensatz Jahresber. Deutsch. Math.-Verein. 1992 170 188

[13] Kytmanov, A. M. A formula for the transformation of the Grothendieck residue and some of its applications Sibirsk. Mat. Zh. 1988

[14] Lipman, Joseph Residues and traces of differential forms via Hochschild homology 1987

[15] Lipman, Joseph, Teissier, Bernard Pseudorational local rings and a theorem of Briançon-Skoda about integral closures of ideals Michigan Math. J. 1981 97 116

[16] Matsumura, Hideyuki Commutative algebra 1980

[17] Philippon, Patrice Dénominateurs dans le théorème des zéros de Hilbert Acta Arith. 1991 1 25

Cité par Sources :