Optimal regularity for quasilinear equations in stratified nilpotent Lie groups and applications
Electronic research announcements of the American Mathematical Society, Tome 02 (1996) no. 1, pp. 60-68.

Voir la notice de l'article provenant de la source American Mathematical Society

We announce the optimal $C^{1+\alpha }$ regularity of the gradient of weak solutions to a class of quasilinear degenerate elliptic equations in nilpotent stratified Lie groups of step two. As a consequence we also prove a Liouville type theorem for $1$-quasiconformal mappings between domains of the Heisenberg group $\mathbb {H}^{n}$.
DOI : 10.1090/S1079-6762-96-00009-1

Capogna, Luca 1

1 Department of Mathematics, Purdue University, West Lafayette, IN 47907
@article{ERAAMS_1996_02_1_a7,
     author = {Capogna, Luca},
     title = {Optimal regularity for quasilinear equations in stratified nilpotent {Lie} groups and applications},
     journal = {Electronic research announcements of the American Mathematical Society},
     pages = {60--68},
     publisher = {mathdoc},
     volume = {02},
     number = {1},
     year = {1996},
     doi = {10.1090/S1079-6762-96-00009-1},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-96-00009-1/}
}
TY  - JOUR
AU  - Capogna, Luca
TI  - Optimal regularity for quasilinear equations in stratified nilpotent Lie groups and applications
JO  - Electronic research announcements of the American Mathematical Society
PY  - 1996
SP  - 60
EP  - 68
VL  - 02
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-96-00009-1/
DO  - 10.1090/S1079-6762-96-00009-1
ID  - ERAAMS_1996_02_1_a7
ER  - 
%0 Journal Article
%A Capogna, Luca
%T Optimal regularity for quasilinear equations in stratified nilpotent Lie groups and applications
%J Electronic research announcements of the American Mathematical Society
%D 1996
%P 60-68
%V 02
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-96-00009-1/
%R 10.1090/S1079-6762-96-00009-1
%F ERAAMS_1996_02_1_a7
Capogna, Luca. Optimal regularity for quasilinear equations in stratified nilpotent Lie groups and applications. Electronic research announcements of the American Mathematical Society, Tome 02 (1996) no. 1, pp. 60-68. doi : 10.1090/S1079-6762-96-00009-1. http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-96-00009-1/

[1] Capogna, Luca, Danielli, Donatella, Garofalo, Nicola An embedding theorem and the Harnack inequality for nonlinear subelliptic equations Comm. Partial Differential Equations 1993 1765 1794

[2] Folland, G. B. Subelliptic estimates and function spaces on nilpotent Lie groups Ark. Mat. 1975 161 207

[3] Folland, G. B., Stein, E. M. Estimates for the ∂̄_{𝑏} complex and analysis on the Heisenberg group Comm. Pure Appl. Math. 1974 429 522

[4] Gehring, F. W. Rings and quasiconformal mappings in space Trans. Amer. Math. Soc. 1962 353 393

[5] Gehring, F. W. The 𝐿^{𝑝}-integrability of the partial derivatives of a quasiconformal mapping Acta Math. 1973 265 277

[6] Giusti, Enrico Minimal surfaces and functions of bounded variation 1984

[7] Kohn, J. J. Pseudo-differential operators and hypoellipticity 1973 61 69

[8] Korányi, A., Reimann, H. M. Quasiconformal mappings on the Heisenberg group Invent. Math. 1985 309 338

[9] Korányi, Adam, Reimann, Hans Martin Horizontal normal vectors and conformal capacity of spherical rings in the Heisenberg group Bull. Sci. Math. (2) 1987 3 21

[10] Korányi, A., Reimann, H. M. Foundations for the theory of quasiconformal mappings on the Heisenberg group Adv. Math. 1995 1 87

[11] Morrey, Charles B., Jr. Multiple integrals in the calculus of variations 1966

[12] Mostow, G. D. Strong rigidity of locally symmetric spaces 1973

[13] Pansu, Pierre Métriques de Carnot-Carathéodory et quasiisométries des espaces symétriques de rang un Ann. of Math. (2) 1989 1 60

[14] Peetre, J. A theory of interpolation of normed spaces 1968

[15] Reshetnyak, Yu. G. Space mappings with bounded distortion 1989

[16] Stein, Elias M. Singular integrals and differentiability properties of functions 1970

[17] Xu, Chao Jiang Subelliptic variational problems Bull. Soc. Math. France 1990 147 169

[18] Xu, Chao Jiang Regularity for quasilinear second-order subelliptic equations Comm. Pure Appl. Math. 1992 77 96

Cité par Sources :