Voir la notice de l'article provenant de la source American Mathematical Society
@article{ERAAMS_1996_02_1_a4, author = {Luo, Feng}, title = {Geodesic length functions and {Teichm\"uller} spaces}, journal = {Electronic research announcements of the American Mathematical Society}, pages = {34--41}, publisher = {mathdoc}, volume = {02}, number = {1}, year = {1996}, doi = {10.1090/S1079-6762-96-00008-X}, url = {http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-96-00008-X/} }
TY - JOUR AU - Luo, Feng TI - Geodesic length functions and Teichmüller spaces JO - Electronic research announcements of the American Mathematical Society PY - 1996 SP - 34 EP - 41 VL - 02 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-96-00008-X/ DO - 10.1090/S1079-6762-96-00008-X ID - ERAAMS_1996_02_1_a4 ER -
%0 Journal Article %A Luo, Feng %T Geodesic length functions and Teichmüller spaces %J Electronic research announcements of the American Mathematical Society %D 1996 %P 34-41 %V 02 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-96-00008-X/ %R 10.1090/S1079-6762-96-00008-X %F ERAAMS_1996_02_1_a4
Luo, Feng. Geodesic length functions and Teichmüller spaces. Electronic research announcements of the American Mathematical Society, Tome 02 (1996) no. 1, pp. 34-41. doi : 10.1090/S1079-6762-96-00008-X. http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-96-00008-X/
[1] The geometry of Teichmüller space via geodesic currents Invent. Math. 1988 139 162
[2] Papers on group theory and topology 1987
[3] Travaux de Thurston sur les surfaces 1979 284
[4] Intrinsic moduli on Riemann surfaces Ann. of Math. (2) 1966 404 420
[5] A representation of orientable combinatorial 3-manifolds Ann. of Math. (2) 1962 531 540
[6] On Klein’s combination theorem. II Trans. Amer. Math. Soc. 1968 32 39
[7] On the global real analytic coordinates for Teichmüller spaces J. Math. Soc. Japan 1990 91 101
[8] Die Parametrisierung des Teichmüllerraumes durch geodätische Längenfunktionen Comment. Math. Helv. 1993 278 288
[9] On the geometry and dynamics of diffeomorphisms of surfaces Bull. Amer. Math. Soc. (N.S.) 1988 417 431
[10] Geodesic length functions and the Nielsen problem J. Differential Geom. 1987 275 296
Cité par Sources :