Geodesic length functions and Teichmüller spaces
Electronic research announcements of the American Mathematical Society, Tome 02 (1996) no. 1, pp. 34-41.

Voir la notice de l'article provenant de la source American Mathematical Society

Given a compact orientable surface $\Sigma$, let $\mathcal {S}(\Sigma )$ be the set of isotopy classes of essential simple closed curves in $\Sigma$. We determine a complete set of relations for a function from $\mathcal {S}(\Sigma )$ to $\mathbf {R}$ to be the geodesic length function of a hyperbolic metric with geodesic boundary on $\Sigma$. As a consequence, the Teichmüller space of hyperbolic metrics with geodesic boundary on $\Sigma$ is reconstructed from an intrinsic combinatorial structure on $\mathcal {S}(\Sigma )$. This also gives a complete description of the image of Thurston’s embedding of the Teichmüller space.
DOI : 10.1090/S1079-6762-96-00008-X

Luo, Feng 1

1 Department of Mathematics, Rutgers University, New Brunswick, NJ 08903
@article{ERAAMS_1996_02_1_a4,
     author = {Luo, Feng},
     title = {Geodesic length functions and {Teichm\"uller} spaces},
     journal = {Electronic research announcements of the American Mathematical Society},
     pages = {34--41},
     publisher = {mathdoc},
     volume = {02},
     number = {1},
     year = {1996},
     doi = {10.1090/S1079-6762-96-00008-X},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-96-00008-X/}
}
TY  - JOUR
AU  - Luo, Feng
TI  - Geodesic length functions and Teichmüller spaces
JO  - Electronic research announcements of the American Mathematical Society
PY  - 1996
SP  - 34
EP  - 41
VL  - 02
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-96-00008-X/
DO  - 10.1090/S1079-6762-96-00008-X
ID  - ERAAMS_1996_02_1_a4
ER  - 
%0 Journal Article
%A Luo, Feng
%T Geodesic length functions and Teichmüller spaces
%J Electronic research announcements of the American Mathematical Society
%D 1996
%P 34-41
%V 02
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-96-00008-X/
%R 10.1090/S1079-6762-96-00008-X
%F ERAAMS_1996_02_1_a4
Luo, Feng. Geodesic length functions and Teichmüller spaces. Electronic research announcements of the American Mathematical Society, Tome 02 (1996) no. 1, pp. 34-41. doi : 10.1090/S1079-6762-96-00008-X. http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-96-00008-X/

[1] Bonahon, Francis The geometry of Teichmüller space via geodesic currents Invent. Math. 1988 139 162

[2] Dehn, Max Papers on group theory and topology 1987

[3] Travaux de Thurston sur les surfaces 1979 284

[4] Keen, Linda Intrinsic moduli on Riemann surfaces Ann. of Math. (2) 1966 404 420

[5] Lickorish, W. B. R. A representation of orientable combinatorial 3-manifolds Ann. of Math. (2) 1962 531 540

[6] Maskit, Bernard On Klein’s combination theorem. II Trans. Amer. Math. Soc. 1968 32 39

[7] Okumura, Yoshihide On the global real analytic coordinates for Teichmüller spaces J. Math. Soc. Japan 1990 91 101

[8] Schmutz, Paul Die Parametrisierung des Teichmüllerraumes durch geodätische Längenfunktionen Comment. Math. Helv. 1993 278 288

[9] Thurston, William P. On the geometry and dynamics of diffeomorphisms of surfaces Bull. Amer. Math. Soc. (N.S.) 1988 417 431

[10] Wolpert, Scott A. Geodesic length functions and the Nielsen problem J. Differential Geom. 1987 275 296

Cité par Sources :