On the pointwise dimension of hyperbolic measures: a proof of the Eckmann-Ruelle conjecture
Electronic research announcements of the American Mathematical Society, Tome 02 (1996) no. 1, pp. 69-72.

Voir la notice de l'article provenant de la source American Mathematical Society

We prove the long-standing Eckmann–Ruelle conjecture in dimension theory of smooth dynamical systems. We show that the pointwise dimension exists almost everywhere with respect to a compactly supported Borel probability measure with non-zero Lyapunov exponents, invariant under a $C^{1+\alpha }$ diffeomorphism of a smooth Riemannian manifold.
DOI : 10.1090/S1079-6762-96-00007-8

Barreira, Luis 1 ; Pesin, Yakov 1 ; Schmeling, Jörg 2

1 Department of Mathematics, The Pennsylvania State University, University Park, PA 16802, U.S.A.
2 Weierstrass Institute of Applied Analysis and Stochastics, Mohrenstrasse 39, D–10117 Berlin, Germany
@article{ERAAMS_1996_02_1_a8,
     author = {Barreira, Luis and Pesin, Yakov and Schmeling, J\"org},
     title = {On the pointwise dimension of hyperbolic measures: a proof of the {Eckmann-Ruelle} conjecture},
     journal = {Electronic research announcements of the American Mathematical Society},
     pages = {69--72},
     publisher = {mathdoc},
     volume = {02},
     number = {1},
     year = {1996},
     doi = {10.1090/S1079-6762-96-00007-8},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-96-00007-8/}
}
TY  - JOUR
AU  - Barreira, Luis
AU  - Pesin, Yakov
AU  - Schmeling, Jörg
TI  - On the pointwise dimension of hyperbolic measures: a proof of the Eckmann-Ruelle conjecture
JO  - Electronic research announcements of the American Mathematical Society
PY  - 1996
SP  - 69
EP  - 72
VL  - 02
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-96-00007-8/
DO  - 10.1090/S1079-6762-96-00007-8
ID  - ERAAMS_1996_02_1_a8
ER  - 
%0 Journal Article
%A Barreira, Luis
%A Pesin, Yakov
%A Schmeling, Jörg
%T On the pointwise dimension of hyperbolic measures: a proof of the Eckmann-Ruelle conjecture
%J Electronic research announcements of the American Mathematical Society
%D 1996
%P 69-72
%V 02
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-96-00007-8/
%R 10.1090/S1079-6762-96-00007-8
%F ERAAMS_1996_02_1_a8
Barreira, Luis; Pesin, Yakov; Schmeling, Jörg. On the pointwise dimension of hyperbolic measures: a proof of the Eckmann-Ruelle conjecture. Electronic research announcements of the American Mathematical Society, Tome 02 (1996) no. 1, pp. 69-72. doi : 10.1090/S1079-6762-96-00007-8. http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-96-00007-8/

[1] Eckmann, J.-P., Ruelle, D. Ergodic theory of chaos and strange attractors Rev. Modern Phys. 1985 617 656

[2] Falconer, Kenneth Fractal geometry 1990

[3] Ledrappier, François Dimension of invariant measures 1987 116 124

[4] Ledrappier, F., Misiurewicz, M. Dimension of invariant measures for maps with exponent zero Ergodic Theory Dynam. Systems 1985 595 610

[5] Ledrappier, F., Young, L.-S. The metric entropy of diffeomorphisms. I. Characterization of measures satisfying Pesin’s entropy formula Ann. of Math. (2) 1985 509 539

[6] Young, Lai Sang Dimension, entropy and Lyapunov exponents Ergodic Theory Dynam. Systems 1982 109 124

Cité par Sources :