Global solutions of the equations of elastodynamics for incompressible materials
Electronic research announcements of the American Mathematical Society, Tome 02 (1996) no. 1, pp. 50-59.

Voir la notice de l'article provenant de la source American Mathematical Society

The equations of the dynamics of an elastic material are a non-linear hyperbolic system whose unknowns are functions of space and time. If the material is incompressible, the system has an additional pseudo-differential term. We prove that such a system has global (classical) solutions if the initial data are small. This contrasts with the case of compressible materials for which F. John has shown that such solutions may not exist even for arbitrarily small data.
@article{ERAAMS_1996_02_1_a6,
     author = {Ebin, David},
     title = {Global solutions of the equations of elastodynamics for incompressible materials},
     journal = {Electronic research announcements of the American Mathematical Society},
     pages = {50--59},
     publisher = {mathdoc},
     volume = {02},
     number = {1},
     year = {1996},
     doi = {10.1090/S1079-6762-96-00006-6},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-96-00006-6/}
}
TY  - JOUR
AU  - Ebin, David
TI  - Global solutions of the equations of elastodynamics for incompressible materials
JO  - Electronic research announcements of the American Mathematical Society
PY  - 1996
SP  - 50
EP  - 59
VL  - 02
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-96-00006-6/
DO  - 10.1090/S1079-6762-96-00006-6
ID  - ERAAMS_1996_02_1_a6
ER  - 
%0 Journal Article
%A Ebin, David
%T Global solutions of the equations of elastodynamics for incompressible materials
%J Electronic research announcements of the American Mathematical Society
%D 1996
%P 50-59
%V 02
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-96-00006-6/
%R 10.1090/S1079-6762-96-00006-6
%F ERAAMS_1996_02_1_a6
Ebin, David. Global solutions of the equations of elastodynamics for incompressible materials. Electronic research announcements of the American Mathematical Society, Tome 02 (1996) no. 1, pp. 50-59. doi : 10.1090/S1079-6762-96-00006-6. http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-96-00006-6/

[1] Christodoulou, Demetrios, Klainerman, Sergiu The global nonlinear stability of the Minkowski space 1993

[2] Ebin, David G. Global solutions of the equations of elastodynamics of incompressible neo-Hookean materials Proc. Nat. Acad. Sci. U.S.A. 1993 3802 3805

[3] Ebin, David G., Saxton, Ralph A. The initial value problem for elastodynamics of incompressible bodies Arch. Rational Mech. Anal. 1986 15 38

[4] Ebin, David G., Simanca, Santiago R. Small deformations of incompressible bodies with free boundary Comm. Partial Differential Equations 1990 1589 1616

[5] Ebin, David G., Simanca, Santiago R. Deformations of incompressible bodies with free boundaries Arch. Rational Mech. Anal. 1992 61 97

[6] Hrusa, William J., Renardy, Michael An existence theorem for the Dirichlet problem in the elastodynamics of incompressible materials Arch. Rational Mech. Anal. 1988 95 117

[7] John, Fritz Formation of singularities in elastic waves 1984 194 210

[8] John, Fritz Blow-up for quasilinear wave equations in three space dimensions Comm. Pure Appl. Math. 1981 29 51

[9] John, Fritz Nonlinear wave equations, formation of singularities 1990

[10] Klainerman, Sergiu Global existence for nonlinear wave equations Comm. Pure Appl. Math. 1980 43 101

[11] Klainerman, Sergiu Uniform decay estimates and the Lorentz invariance of the classical wave equation Comm. Pure Appl. Math. 1985 321 332

[12] Klainerman, S. The null condition and global existence to nonlinear wave equations 1986 293 326

[13] Marsden, Jerrold E., Hughes, Thomas J. R. Mathematical foundations of elasticity 1994

Cité par Sources :