Voir la notice de l'article provenant de la source American Mathematical Society
Krichevskii, Rafail 1 ; Potapov, Vladimir 1
@article{ERAAMS_1996_02_1_a5, author = {Krichevskii, Rafail and Potapov, Vladimir}, title = {Compression and restoration of square integrable functions}, journal = {Electronic research announcements of the American Mathematical Society}, pages = {42--49}, publisher = {mathdoc}, volume = {02}, number = {1}, year = {1996}, doi = {10.1090/S1079-6762-96-00005-4}, url = {http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-96-00005-4/} }
TY - JOUR AU - Krichevskii, Rafail AU - Potapov, Vladimir TI - Compression and restoration of square integrable functions JO - Electronic research announcements of the American Mathematical Society PY - 1996 SP - 42 EP - 49 VL - 02 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-96-00005-4/ DO - 10.1090/S1079-6762-96-00005-4 ID - ERAAMS_1996_02_1_a5 ER -
%0 Journal Article %A Krichevskii, Rafail %A Potapov, Vladimir %T Compression and restoration of square integrable functions %J Electronic research announcements of the American Mathematical Society %D 1996 %P 42-49 %V 02 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-96-00005-4/ %R 10.1090/S1079-6762-96-00005-4 %F ERAAMS_1996_02_1_a5
Krichevskii, Rafail; Potapov, Vladimir. Compression and restoration of square integrable functions. Electronic research announcements of the American Mathematical Society, Tome 02 (1996) no. 1, pp. 42-49. doi : 10.1090/S1079-6762-96-00005-4. http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-96-00005-4/
[1] Orthonormal bases of compactly supported wavelets Comm. Pure Appl. Math. 1988 909 996
[2] Ten lectures on wavelets 1992
[3] Surface compression Comput. Aided Geom. Design 1992 219 239
, ,[4] Compression of wavelet decompositions Amer. J. Math. 1992 737 785
, ,[5] Unconditional bases are optimal bases for data compression and for statistical estimation Appl. Comput. Harmon. Anal. 1993 100 115
[6] 𝜖-entropy and 𝜖-capacity of sets in function spaces Uspehi Mat. Nauk 1959 3 86
,[7] Universal compression and retrieval 1994
[8] Mathematical methods in computer aided geometric design. II 1992
[9] Multiresolution approximations and wavelet orthonormal bases of 𝐿²(𝑅) Trans. Amer. Math. Soc. 1989 69 87
[10] A fast algorithm for the discrete Laplace transformation J. Complexity 1988 12 32
[11] Approximation numbers and entropy numbers of embeddings of fractional Besov-Sobolev spaces in Orlicz spaces Proc. London Math. Soc. (3) 1993 589 618
Cité par Sources :