Compression and restoration of square integrable functions
Electronic research announcements of the American Mathematical Society, Tome 02 (1996) no. 1, pp. 42-49.

Voir la notice de l'article provenant de la source American Mathematical Society

We consider classes of smooth functions on $[0,1]$ with mean square norm. We present a wavelet-based method for obtaining approximate pointwise reconstruction of every function with nearly minimal cost without substantially increasing the amount of data stored. In more detail: each function $f$ of a class is supplied with a binary code of minimal (up to a constant factor) length, where the minimal length equals the $\varepsilon$-entropy of the class, $\varepsilon > 0$. Given that code of $f$ we can calculate $f$, $\varepsilon$-precisely in $L_2$, at any specific $N, N\geq 1,$ points of $[0,1]$ consuming $O(1+\log ^*((1/\varepsilon )^{(1/\alpha )}/N))$ operations per point. If the quantity $N$ of points is a constant, then we consume $O(\log ^*1/\varepsilon )$ operations per point. If $N$ goes up to the $\varepsilon$-entropy, then the per-point time consumption goes down to a constant, which is less than the corresponding constant in the fast algorithm of Mallat [11]. Since the iterated logarithm $\log ^*$ is a very slowly increasing function, we can say that our calculation method is nearly optimal.
DOI : 10.1090/S1079-6762-96-00005-4

Krichevskii, Rafail 1 ; Potapov, Vladimir 1

1 Sobolev Mathematical Institute, Novosibirsk, Russia
@article{ERAAMS_1996_02_1_a5,
     author = {Krichevskii, Rafail and Potapov, Vladimir},
     title = {Compression and restoration of square integrable functions},
     journal = {Electronic research announcements of the American Mathematical Society},
     pages = {42--49},
     publisher = {mathdoc},
     volume = {02},
     number = {1},
     year = {1996},
     doi = {10.1090/S1079-6762-96-00005-4},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-96-00005-4/}
}
TY  - JOUR
AU  - Krichevskii, Rafail
AU  - Potapov, Vladimir
TI  - Compression and restoration of square integrable functions
JO  - Electronic research announcements of the American Mathematical Society
PY  - 1996
SP  - 42
EP  - 49
VL  - 02
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-96-00005-4/
DO  - 10.1090/S1079-6762-96-00005-4
ID  - ERAAMS_1996_02_1_a5
ER  - 
%0 Journal Article
%A Krichevskii, Rafail
%A Potapov, Vladimir
%T Compression and restoration of square integrable functions
%J Electronic research announcements of the American Mathematical Society
%D 1996
%P 42-49
%V 02
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-96-00005-4/
%R 10.1090/S1079-6762-96-00005-4
%F ERAAMS_1996_02_1_a5
Krichevskii, Rafail; Potapov, Vladimir. Compression and restoration of square integrable functions. Electronic research announcements of the American Mathematical Society, Tome 02 (1996) no. 1, pp. 42-49. doi : 10.1090/S1079-6762-96-00005-4. http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-96-00005-4/

[1] Daubechies, Ingrid Orthonormal bases of compactly supported wavelets Comm. Pure Appl. Math. 1988 909 996

[2] Daubechies, Ingrid Ten lectures on wavelets 1992

[3] Devore, Ronald A., Jawerth, Björn, Lucier, Bradley J. Surface compression Comput. Aided Geom. Design 1992 219 239

[4] Devore, Ronald A., Jawerth, Björn, Popov, Vasil Compression of wavelet decompositions Amer. J. Math. 1992 737 785

[5] Donoho, David L. Unconditional bases are optimal bases for data compression and for statistical estimation Appl. Comput. Harmon. Anal. 1993 100 115

[6] Kolmogorov, A. N., Tihomirov, V. M. 𝜖-entropy and 𝜖-capacity of sets in function spaces Uspehi Mat. Nauk 1959 3 86

[7] Krichevsky, Rafail Universal compression and retrieval 1994

[8] Mathematical methods in computer aided geometric design. II 1992

[9] Mallat, Stephane G. Multiresolution approximations and wavelet orthonormal bases of 𝐿²(𝑅) Trans. Amer. Math. Soc. 1989 69 87

[10] Rokhlin, V. A fast algorithm for the discrete Laplace transformation J. Complexity 1988 12 32

[11] Triebel, Hans Approximation numbers and entropy numbers of embeddings of fractional Besov-Sobolev spaces in Orlicz spaces Proc. London Math. Soc. (3) 1993 589 618

Cité par Sources :