A new proof of the four-colour theorem
Electronic research announcements of the American Mathematical Society, Tome 02 (1996) no. 1, pp. 17-25.

Voir la notice de l'article provenant de la source American Mathematical Society

The four-colour theorem, that every loopless planar graph admits a vertex-colouring with at most four different colours, was proved in 1976 by Appel and Haken, using a computer. Here we announce another proof, still using a computer, but simpler than Appel and Haken’s in several respects.
DOI : 10.1090/S1079-6762-96-00003-0

Robertson, Neil 1 ; Sanders, Daniel 2 ; Seymour, Paul 3 ; Thomas, Robin 2

1 Department of Mathematics, Ohio State University, 231 W. 18th Ave., Columbus, Ohio 43210, USA
2 School of Mathematics, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
3 Bellcore, 445 South Street, Morristown, New Jersey 07960, USA
@article{ERAAMS_1996_02_1_a2,
     author = {Robertson, Neil and Sanders, Daniel and Seymour, Paul and Thomas, Robin},
     title = {A new proof of the four-colour theorem},
     journal = {Electronic research announcements of the American Mathematical Society},
     pages = {17--25},
     publisher = {mathdoc},
     volume = {02},
     number = {1},
     year = {1996},
     doi = {10.1090/S1079-6762-96-00003-0},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-96-00003-0/}
}
TY  - JOUR
AU  - Robertson, Neil
AU  - Sanders, Daniel
AU  - Seymour, Paul
AU  - Thomas, Robin
TI  - A new proof of the four-colour theorem
JO  - Electronic research announcements of the American Mathematical Society
PY  - 1996
SP  - 17
EP  - 25
VL  - 02
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-96-00003-0/
DO  - 10.1090/S1079-6762-96-00003-0
ID  - ERAAMS_1996_02_1_a2
ER  - 
%0 Journal Article
%A Robertson, Neil
%A Sanders, Daniel
%A Seymour, Paul
%A Thomas, Robin
%T A new proof of the four-colour theorem
%J Electronic research announcements of the American Mathematical Society
%D 1996
%P 17-25
%V 02
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-96-00003-0/
%R 10.1090/S1079-6762-96-00003-0
%F ERAAMS_1996_02_1_a2
Robertson, Neil; Sanders, Daniel; Seymour, Paul; Thomas, Robin. A new proof of the four-colour theorem. Electronic research announcements of the American Mathematical Society, Tome 02 (1996) no. 1, pp. 17-25. doi : 10.1090/S1079-6762-96-00003-0. http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-96-00003-0/

[1] Allaire, Frank Another proof of the four colour theorem. I 1978 3 72

[2] Allaire, Frank, Swart, Edward Reinier A systematic approach to the determination of reducible configurations in the four-color conjecture J. Combin. Theory Ser. B 1978 339 362

[3] Appel, K., Haken, W. Every planar map is four colorable. I. Discharging Illinois J. Math. 1977 429 490

[4] Appel, K., Haken, W. Every planar map is four colorable. I. Discharging Illinois J. Math. 1977 429 490

[5] Appel, Kenneth, Haken, Wolfgang Every planar map is four colorable 1989

[6] Birkhoff, Garrett, Ward, Morgan A characterization of Boolean algebras Ann. of Math. (2) 1939 609 610

[7] Gismondi, S. J., Swart, E. R. A new type of 4-colour reducibility Congr. Numer. 1991 33 48

[8] Heesch, Heinrich Untersuchungen zum Vierfarbenproblem 1969 290

[9] Mayer, Jean Une propriété des graphes minimaux dans le problème des quatre couleurs 1978 291 295

[10] Whitney, Hassler, Tutte, W. T. Kempe chains and the four colour problem 1975 378 413

Cité par Sources :