Voir la notice de l'article provenant de la source American Mathematical Society
Robertson, Neil 1 ; Sanders, Daniel 2 ; Seymour, Paul 3 ; Thomas, Robin 2
@article{ERAAMS_1996_02_1_a2, author = {Robertson, Neil and Sanders, Daniel and Seymour, Paul and Thomas, Robin}, title = {A new proof of the four-colour theorem}, journal = {Electronic research announcements of the American Mathematical Society}, pages = {17--25}, publisher = {mathdoc}, volume = {02}, number = {1}, year = {1996}, doi = {10.1090/S1079-6762-96-00003-0}, url = {http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-96-00003-0/} }
TY - JOUR AU - Robertson, Neil AU - Sanders, Daniel AU - Seymour, Paul AU - Thomas, Robin TI - A new proof of the four-colour theorem JO - Electronic research announcements of the American Mathematical Society PY - 1996 SP - 17 EP - 25 VL - 02 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-96-00003-0/ DO - 10.1090/S1079-6762-96-00003-0 ID - ERAAMS_1996_02_1_a2 ER -
%0 Journal Article %A Robertson, Neil %A Sanders, Daniel %A Seymour, Paul %A Thomas, Robin %T A new proof of the four-colour theorem %J Electronic research announcements of the American Mathematical Society %D 1996 %P 17-25 %V 02 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-96-00003-0/ %R 10.1090/S1079-6762-96-00003-0 %F ERAAMS_1996_02_1_a2
Robertson, Neil; Sanders, Daniel; Seymour, Paul; Thomas, Robin. A new proof of the four-colour theorem. Electronic research announcements of the American Mathematical Society, Tome 02 (1996) no. 1, pp. 17-25. doi : 10.1090/S1079-6762-96-00003-0. http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-96-00003-0/
[1] Another proof of the four colour theorem. I 1978 3 72
[2] A systematic approach to the determination of reducible configurations in the four-color conjecture J. Combin. Theory Ser. B 1978 339 362
,[3] Every planar map is four colorable. I. Discharging Illinois J. Math. 1977 429 490
,[4] Every planar map is four colorable. I. Discharging Illinois J. Math. 1977 429 490
,[5] Every planar map is four colorable 1989
,[6] A characterization of Boolean algebras Ann. of Math. (2) 1939 609 610
,[7] A new type of 4-colour reducibility Congr. Numer. 1991 33 48
,[8] Untersuchungen zum Vierfarbenproblem 1969 290
[9] Une propriété des graphes minimaux dans le problème des quatre couleurs 1978 291 295
[10] Kempe chains and the four colour problem 1975 378 413
,Cité par Sources :