Unitons and their moduli
Electronic research announcements of the American Mathematical Society, Tome 02 (1996) no. 1, pp. 7-16.

Voir la notice de l'article provenant de la source American Mathematical Society

We sketch the proof that unitons (harmonic spheres in $\operatorname {U}(N)$) correspond to holomorphic ‘uniton bundles’, and that these admit monad representations analogous to Donaldson’s representation of instanton bundles. We also give a closed-form expression for the unitons involving only matrix operations, a finite-gap result (two-unitons have energy $\ge 4$), computations of fundamental groups of energy $\le 4$ components, new methods of proving discreteness of the energy spectrum and of Wood’s Rationality Conjecture, a discussion of the maps into complex Grassmannians and some open problems.
DOI : 10.1090/S1079-6762-96-00002-9

Anand, Christopher 1

1 Mathematics Research Centre, University of Warwick, Coventry CV4 7AL, UK
@article{ERAAMS_1996_02_1_a1,
     author = {Anand, Christopher},
     title = {Unitons and their moduli},
     journal = {Electronic research announcements of the American Mathematical Society},
     pages = {7--16},
     publisher = {mathdoc},
     volume = {02},
     number = {1},
     year = {1996},
     doi = {10.1090/S1079-6762-96-00002-9},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-96-00002-9/}
}
TY  - JOUR
AU  - Anand, Christopher
TI  - Unitons and their moduli
JO  - Electronic research announcements of the American Mathematical Society
PY  - 1996
SP  - 7
EP  - 16
VL  - 02
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-96-00002-9/
DO  - 10.1090/S1079-6762-96-00002-9
ID  - ERAAMS_1996_02_1_a1
ER  - 
%0 Journal Article
%A Anand, Christopher
%T Unitons and their moduli
%J Electronic research announcements of the American Mathematical Society
%D 1996
%P 7-16
%V 02
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-96-00002-9/
%R 10.1090/S1079-6762-96-00002-9
%F ERAAMS_1996_02_1_a1
Anand, Christopher. Unitons and their moduli. Electronic research announcements of the American Mathematical Society, Tome 02 (1996) no. 1, pp. 7-16. doi : 10.1090/S1079-6762-96-00002-9. http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-96-00002-9/

[1] Atiyah, M. F., Hitchin, N. J., Drinfel′D, V. G., Manin, Yu. I. Construction of instantons Phys. Lett. A 1978 185 187

[2] Boyer, C. P., Hurtubise, J. C., Mann, B. M., Milgram, R. J. The topology of instanton moduli spaces. I. The Atiyah-Jones conjecture Ann. of Math. (2) 1993 561 609

[3] Burstall, Francis E., Rawnsley, John H. Twistor theory for Riemannian symmetric spaces 1990

[4] Donaldson, S. K. Instantons and geometric invariant theory Comm. Math. Phys. 1984 453 460

[5] Furuta, Mikio, Guest, Martin A., Kotani, Motoko, Ohnita, Yoshihiro On the fundamental group of the space of harmonic 2-spheres in the 𝑛-sphere Math. Z. 1994 503 518

[6] Hitchin, N. J. Monopoles and geodesics Comm. Math. Phys. 1982 579 602

[7] Horrocks, G. Vector bundles on the punctured spectrum of a local ring Proc. London Math. Soc. (3) 1964 689 713

[8] Hurtubise, Jacques Instantons and jumping lines Comm. Math. Phys. 1986 107 122

[9] Murray, M. K. Nonabelian magnetic monopoles Comm. Math. Phys. 1984 539 565

[10] Okonek, Christian, Schneider, Michael, Spindler, Heinz Vector bundles on complex projective spaces 1980

[11] Pohlmeyer, K. Integrable Hamiltonian systems and interactions through quadratic constraints Comm. Math. Phys. 1976 207 221

[12] Sacks, J., Uhlenbeck, K. The existence of minimal immersions of 2-spheres Ann. of Math. (2) 1981 1 24

[13] Segal, Graeme Loop groups and harmonic maps 1989 153 164

[14] Uhlenbeck, Karen Harmonic maps into Lie groups: classical solutions of the chiral model J. Differential Geom. 1989 1 50

[15] Valli, Giorgio On the energy spectrum of harmonic 2-spheres in unitary groups Topology 1988 129 136

[16] Valli, Giorgio Interpolation theory, loop groups and instantons J. Reine Angew. Math. 1994 137 163

[17] Ward, R. S. Classical solutions of the chiral model, unitons, and holomorphic vector bundles Comm. Math. Phys. 1990 319 332

[18] Wood, John C. Explicit construction and parametrization of harmonic two-spheres in the unitary group Proc. London Math. Soc. (3) 1989 608 624

Cité par Sources :