The Ehrhart polynomial of a lattice đť‘› -simplex
Electronic research announcements of the American Mathematical Society, Tome 02 (1996) no. 1, pp. 1-6.

Voir la notice de l'article provenant de la source American Mathematical Society

The problem of counting the number of lattice points inside a lattice polytope in $\mathbb {R}^{n}$ has been studied from a variety of perspectives, including the recent work of Pommersheim and Kantor-Khovanskii using toric varieties and Cappell-Shaneson using Grothendieck-Riemann-Roch. Here we show that the Ehrhart polynomial of a lattice $n$-simplex has a simple analytical interpretation from the perspective of Fourier Analysis on the $n$-torus. We obtain closed forms in terms of cotangent expansions for the coefficients of the Ehrhart polynomial, that shed additional light on previous descriptions of the Ehrhart polynomial.
DOI : 10.1090/S1079-6762-96-00001-7

Diaz, Ricardo 1 ; Robins, Sinai 2

1 Department of Mathematics, University of Northern Colorado, Greeley, Colorado 80639
2 Department of Mathematics, UCSD 9500 Gilman Drive, La Jolla, CA 92093-0112
@article{ERAAMS_1996_02_1_a0,
     author = {Diaz, Ricardo and Robins, Sinai},
     title = {The {Ehrhart} polynomial of a lattice \ensuremath{\mathit{n}} -simplex},
     journal = {Electronic research announcements of the American Mathematical Society},
     pages = {1--6},
     publisher = {mathdoc},
     volume = {02},
     number = {1},
     year = {1996},
     doi = {10.1090/S1079-6762-96-00001-7},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-96-00001-7/}
}
TY  - JOUR
AU  - Diaz, Ricardo
AU  - Robins, Sinai
TI  - The Ehrhart polynomial of a lattice đť‘› -simplex
JO  - Electronic research announcements of the American Mathematical Society
PY  - 1996
SP  - 1
EP  - 6
VL  - 02
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-96-00001-7/
DO  - 10.1090/S1079-6762-96-00001-7
ID  - ERAAMS_1996_02_1_a0
ER  - 
%0 Journal Article
%A Diaz, Ricardo
%A Robins, Sinai
%T The Ehrhart polynomial of a lattice đť‘› -simplex
%J Electronic research announcements of the American Mathematical Society
%D 1996
%P 1-6
%V 02
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-96-00001-7/
%R 10.1090/S1079-6762-96-00001-7
%F ERAAMS_1996_02_1_a0
Diaz, Ricardo; Robins, Sinai. The Ehrhart polynomial of a lattice đť‘› -simplex. Electronic research announcements of the American Mathematical Society, Tome 02 (1996) no. 1, pp. 1-6. doi : 10.1090/S1079-6762-96-00001-7. http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-96-00001-7/

[1] Brion, Michel Points entiers dans les polyèdres convexes Ann. Sci. École Norm. Sup. (4) 1988 653 663

[2] Cappell, Sylvain E., Shaneson, Julius L. Genera of algebraic varieties and counting of lattice points Bull. Amer. Math. Soc. (N.S.) 1994 62 69

[3] Danilov, V. I. The geometry of toric varieties Uspekhi Mat. Nauk 1978

[4] Ehrhart, E. Sur un problème de géométrie diophantienne linéaire. II. Systèmes diophantiens linéaires J. Reine Angew. Math. 1967 25 49

[5] Hirzebruch, F., Zagier, D. The Atiyah-Singer theorem and elementary number theory 1974

[6] Kantor, Jean-Michel, Khovanskii, Askold Une application du théorème de Riemann-Roch combinatoire au polynôme d’Ehrhart des polytopes entiers de 𝑅^{𝑑} C. R. Acad. Sci. Paris Sér. I Math. 1993 501 507

[7] Macdonald, I. G. Polynomials associated with finite cell-complexes J. London Math. Soc. (2) 1971 181 192

[8] Everett, C. J., Jr. Annihilator ideals and representation iteration for abstract rings Duke Math. J. 1939 623 627

[9] Newman, Morris Integral matrices 1972

[10] Pinsky, Mark A. Pointwise Fourier inversion in several variables Notices Amer. Math. Soc. 1995 330 334

[11] Pommersheim, James E. Toric varieties, lattice points and Dedekind sums Math. Ann. 1993 1 24

[12] Randol, Burton On the Fourier transform of the indicator function of a planar set Trans. Amer. Math. Soc. 1969 271 278

[13] Stein, Elias M., Weiss, Guido Introduction to Fourier analysis on Euclidean spaces 1971

[14] Stanley, Richard P. Combinatorial reciprocity theorems Advances in Math. 1974 194 253

[15] Gabai, David Genera of the arborescent links Mem. Amer. Math. Soc. 1986

[16] Xu, Yi-Jing, Yau, Stephen S.-T. A sharp estimate of the number of integral points in a tetrahedron J. Reine Angew. Math. 1992 199 219

[17] Zagier, Don Higher dimensional Dedekind sums Math. Ann. 1973 149 172

Cité par Sources :