Voir la notice de l'article provenant de la source American Mathematical Society
Eskin, Alex 1 ; Margulis, Gregory 2 ; Mozes, Shahar 3
@article{ERAAMS_1995_01_3_a5, author = {Eskin, Alex and Margulis, Gregory and Mozes, Shahar}, title = {On a quantitative version of the {Oppenheim} conjecture}, journal = {Electronic research announcements of the American Mathematical Society}, pages = {124--130}, publisher = {mathdoc}, volume = {01}, number = {3}, year = {1995}, doi = {10.1090/S1079-6762-95-03006-X}, url = {http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-95-03006-X/} }
TY - JOUR AU - Eskin, Alex AU - Margulis, Gregory AU - Mozes, Shahar TI - On a quantitative version of the Oppenheim conjecture JO - Electronic research announcements of the American Mathematical Society PY - 1995 SP - 124 EP - 130 VL - 01 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-95-03006-X/ DO - 10.1090/S1079-6762-95-03006-X ID - ERAAMS_1995_01_3_a5 ER -
%0 Journal Article %A Eskin, Alex %A Margulis, Gregory %A Mozes, Shahar %T On a quantitative version of the Oppenheim conjecture %J Electronic research announcements of the American Mathematical Society %D 1995 %P 124-130 %V 01 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-95-03006-X/ %R 10.1090/S1079-6762-95-03006-X %F ERAAMS_1995_01_3_a5
Eskin, Alex; Margulis, Gregory; Mozes, Shahar. On a quantitative version of the Oppenheim conjecture. Electronic research announcements of the American Mathematical Society, Tome 01 (1995) no. 3, pp. 124-130. doi : 10.1090/S1079-6762-95-03006-X. http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-95-03006-X/
[1] On orbits of unipotent flows on homogeneous spaces Ergodic Theory Dynam. Systems 1984 25 34
[2] On orbits of unipotent flows on homogeneous spaces. II Ergodic Theory Dynam. Systems 1986 167 182
[3] Limit distributions of orbits of unipotent flows and values of quadratic forms 1993 91 137
,[4] Discrete subgroups and ergodic theory 1989 377 398
[5] Strict measure rigidity for unipotent subgroups of solvable groups Invent. Math. 1990 449 482
[6] On measure rigidity of unipotent subgroups of semisimple groups Acta Math. 1990 229 309
[7] On Raghunathan’s measure conjecture Ann. of Math. (2) 1991 545 607
[8] Raghunathan’s topological conjecture and distributions of unipotent flows Duke Math. J. 1991 235 280
[9] Asymptotic formulae for point lattices of bounded determinant and subspaces of bounded height Duke Math. J. 1968 327 339
Cité par Sources :