On a quantitative version of the Oppenheim conjecture
Electronic research announcements of the American Mathematical Society, Tome 01 (1995) no. 3, pp. 124-130.

Voir la notice de l'article provenant de la source American Mathematical Society

The Oppenheim conjecture, proved by Margulis in 1986, states that the set of values at integral points of an indefinite quadratic form in three or more variables is dense, provided the form is not proportional to a rational form. In this paper we study the distribution of values of such a form. We show that if the signature of the form is not $(2,1)$ or $(2,2)$, then the values are uniformly distributed on the real line, provided the form is not proportional to a rational form. In the cases where the signature is $(2,1)$ or $(2,2)$ we show that no such universal formula exists, and give asymptotic upper bounds which are in general best possible.
DOI : 10.1090/S1079-6762-95-03006-X

Eskin, Alex 1 ; Margulis, Gregory 2 ; Mozes, Shahar 3

1 Department of Mathematics, University of Chicago, Chicago, IL 60637, USA
2 Department of Mathematics, Yale University, New Haven, CT, USA
3 Institute of Mathematics, Hebrew University, Jerusalem 91904, ISRAEL
@article{ERAAMS_1995_01_3_a5,
     author = {Eskin, Alex and Margulis, Gregory and Mozes, Shahar},
     title = {On a quantitative version of the {Oppenheim} conjecture},
     journal = {Electronic research announcements of the American Mathematical Society},
     pages = {124--130},
     publisher = {mathdoc},
     volume = {01},
     number = {3},
     year = {1995},
     doi = {10.1090/S1079-6762-95-03006-X},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-95-03006-X/}
}
TY  - JOUR
AU  - Eskin, Alex
AU  - Margulis, Gregory
AU  - Mozes, Shahar
TI  - On a quantitative version of the Oppenheim conjecture
JO  - Electronic research announcements of the American Mathematical Society
PY  - 1995
SP  - 124
EP  - 130
VL  - 01
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-95-03006-X/
DO  - 10.1090/S1079-6762-95-03006-X
ID  - ERAAMS_1995_01_3_a5
ER  - 
%0 Journal Article
%A Eskin, Alex
%A Margulis, Gregory
%A Mozes, Shahar
%T On a quantitative version of the Oppenheim conjecture
%J Electronic research announcements of the American Mathematical Society
%D 1995
%P 124-130
%V 01
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-95-03006-X/
%R 10.1090/S1079-6762-95-03006-X
%F ERAAMS_1995_01_3_a5
Eskin, Alex; Margulis, Gregory; Mozes, Shahar. On a quantitative version of the Oppenheim conjecture. Electronic research announcements of the American Mathematical Society, Tome 01 (1995) no. 3, pp. 124-130. doi : 10.1090/S1079-6762-95-03006-X. http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-95-03006-X/

[1] Dani, S. G. On orbits of unipotent flows on homogeneous spaces Ergodic Theory Dynam. Systems 1984 25 34

[2] Dani, S. G. On orbits of unipotent flows on homogeneous spaces. II Ergodic Theory Dynam. Systems 1986 167 182

[3] Dani, S. G., Margulis, G. A. Limit distributions of orbits of unipotent flows and values of quadratic forms 1993 91 137

[4] Margulis, G. A. Discrete subgroups and ergodic theory 1989 377 398

[5] Ratner, Marina Strict measure rigidity for unipotent subgroups of solvable groups Invent. Math. 1990 449 482

[6] Ratner, Marina On measure rigidity of unipotent subgroups of semisimple groups Acta Math. 1990 229 309

[7] Ratner, Marina On Raghunathan’s measure conjecture Ann. of Math. (2) 1991 545 607

[8] Ratner, Marina Raghunathan’s topological conjecture and distributions of unipotent flows Duke Math. J. 1991 235 280

[9] Schmidt, Wolfgang M. Asymptotic formulae for point lattices of bounded determinant and subspaces of bounded height Duke Math. J. 1968 327 339

Cité par Sources :