Voir la notice de l'article provenant de la source American Mathematical Society
Fontana, Luigi 1 ; Krantz, Steven 2 ; Peloso, Marco 3
@article{ERAAMS_1995_01_3_a1, author = {Fontana, Luigi and Krantz, Steven and Peloso, Marco}, title = {Hodge theory in the {Sobolev} topology for the de {Rham} complex on a smoothly bounded domain in {Euclidean} space}, journal = {Electronic research announcements of the American Mathematical Society}, pages = {103--107}, publisher = {mathdoc}, volume = {01}, number = {3}, year = {1995}, doi = {10.1090/S1079-6762-95-03002-2}, url = {http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-95-03002-2/} }
TY - JOUR AU - Fontana, Luigi AU - Krantz, Steven AU - Peloso, Marco TI - Hodge theory in the Sobolev topology for the de Rham complex on a smoothly bounded domain in Euclidean space JO - Electronic research announcements of the American Mathematical Society PY - 1995 SP - 103 EP - 107 VL - 01 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-95-03002-2/ DO - 10.1090/S1079-6762-95-03002-2 ID - ERAAMS_1995_01_3_a1 ER -
%0 Journal Article %A Fontana, Luigi %A Krantz, Steven %A Peloso, Marco %T Hodge theory in the Sobolev topology for the de Rham complex on a smoothly bounded domain in Euclidean space %J Electronic research announcements of the American Mathematical Society %D 1995 %P 103-107 %V 01 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-95-03002-2/ %R 10.1090/S1079-6762-95-03002-2 %F ERAAMS_1995_01_3_a1
Fontana, Luigi; Krantz, Steven; Peloso, Marco. Hodge theory in the Sobolev topology for the de Rham complex on a smoothly bounded domain in Euclidean space. Electronic research announcements of the American Mathematical Society, Tome 01 (1995) no. 3, pp. 103-107. doi : 10.1090/S1079-6762-95-03002-2. http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-95-03002-2/
[1] Comportement d’un opérateur pseudo-différentiel sur une variété à bord. I. La propriété de transmission J. Analyse Math. 1966 241 253
[2] Comportement d’un opérateur pseudo-différentiel sur une variété à bord. II. Pseudo-noyaux de Poisson J. Analyse Math. 1966 255 304
[3] Boundary problems for pseudo-differential operators Acta Math. 1971 11 51
[4] The Neumann problem for the Cauchy-Riemann complex 1972
,[5] Harmonic integrals on strongly pseudo-convex manifolds. I Ann. of Math. (2) 1963 112 148
[6] The 𝐷-Neumann problem Acta Math. 1968 223 277
Cité par Sources :