Voir la notice de l'article provenant de la source American Mathematical Society
Hass, Joel 1 ; Hutchings, Michael 2 ; Schlafly, Roger 3
@article{ERAAMS_1995_01_3_a0, author = {Hass, Joel and Hutchings, Michael and Schlafly, Roger}, title = {The double bubble conjecture}, journal = {Electronic research announcements of the American Mathematical Society}, pages = {98--102}, publisher = {mathdoc}, volume = {01}, number = {3}, year = {1995}, doi = {10.1090/S1079-6762-95-03001-0}, url = {http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-95-03001-0/} }
TY - JOUR AU - Hass, Joel AU - Hutchings, Michael AU - Schlafly, Roger TI - The double bubble conjecture JO - Electronic research announcements of the American Mathematical Society PY - 1995 SP - 98 EP - 102 VL - 01 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-95-03001-0/ DO - 10.1090/S1079-6762-95-03001-0 ID - ERAAMS_1995_01_3_a0 ER -
%0 Journal Article %A Hass, Joel %A Hutchings, Michael %A Schlafly, Roger %T The double bubble conjecture %J Electronic research announcements of the American Mathematical Society %D 1995 %P 98-102 %V 01 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-95-03001-0/ %R 10.1090/S1079-6762-95-03001-0 %F ERAAMS_1995_01_3_a0
Hass, Joel; Hutchings, Michael; Schlafly, Roger. The double bubble conjecture. Electronic research announcements of the American Mathematical Society, Tome 01 (1995) no. 3, pp. 98-102. doi : 10.1090/S1079-6762-95-03001-0. http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-95-03001-0/
[1] The standard double soap bubble in 𝑅² uniquely minimizes perimeter Pacific J. Math. 1993 47 59
, , , ,[2] Existence and regularity almost everywhere of solutions to elliptic variational problems with constraints Mem. Amer. Math. Soc. 1976
[3] The surfaces of Delaunay Math. Intelligencer 1987 53 57
[4] Clusters minimizing area plus length of singular curves Math. Ann. 1994 697 714
[5] Methods and applications of interval analysis 1979
[6] The structure of singularities in soap-bubble-like and soap-film-like minimal surfaces Ann. of Math. (2) 1976 489 539
[7] On growth and form 1961
Cité par Sources :