On quantum limits on flat tori
Electronic research announcements of the American Mathematical Society, Tome 01 (1995) no. 2, pp. 80-86.

Voir la notice de l'article provenant de la source American Mathematical Society

We classify all weak $*$ limits of squares of normalized eigenfunctions of the Laplacian on two-dimensional flat tori (we call these limits quantum limits). We also obtain several results about such limits in dimensions three and higher. Many of the results are a consequence of a geometric lemma which describes a property of simplices of codimension one in $\mathbb {R}^n$ whose vertices are lattice points on spheres. The lemma follows from the finiteness of the number of solutions of a system of two Pell equations. A consequence of the lemma is a generalization of the result of B. Connes. We also indicate a proof (communicated to us by J. Bourgain) of the absolute continuity of the quantum limits on a flat torus in any dimension. We generalize a two-dimensional result of Zygmund to three dimensions; we discuss various possible generalizations of that result to higher dimensions and the relation to $L^p$ norms of the densities of quantum limits and their Fourier series.
DOI : 10.1090/S1079-6762-95-02004-X

Jakobson, Dmitry 1

1 address Department of Mathematics, Princeton University, Princeton, NJ 08544
@article{ERAAMS_1995_01_2_a3,
     author = {Jakobson, Dmitry},
     title = {On quantum limits on flat tori},
     journal = {Electronic research announcements of the American Mathematical Society},
     pages = {80--86},
     publisher = {mathdoc},
     volume = {01},
     number = {2},
     year = {1995},
     doi = {10.1090/S1079-6762-95-02004-X},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-95-02004-X/}
}
TY  - JOUR
AU  - Jakobson, Dmitry
TI  - On quantum limits on flat tori
JO  - Electronic research announcements of the American Mathematical Society
PY  - 1995
SP  - 80
EP  - 86
VL  - 01
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-95-02004-X/
DO  - 10.1090/S1079-6762-95-02004-X
ID  - ERAAMS_1995_01_2_a3
ER  - 
%0 Journal Article
%A Jakobson, Dmitry
%T On quantum limits on flat tori
%J Electronic research announcements of the American Mathematical Society
%D 1995
%P 80-86
%V 01
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-95-02004-X/
%R 10.1090/S1079-6762-95-02004-X
%F ERAAMS_1995_01_2_a3
Jakobson, Dmitry. On quantum limits on flat tori. Electronic research announcements of the American Mathematical Society, Tome 01 (1995) no. 2, pp. 80-86. doi : 10.1090/S1079-6762-95-02004-X. http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-95-02004-X/

[1] Baker, Alan Transcendental number theory 1975

[2] Baker, A. A sharpening of the bounds for linear forms in logarithms. II Acta Arith. 1973

[3] Bourgain, J. Eigenfunction bounds for the Laplacian on the 𝑛-torus Internat. Math. Res. Notices 1993 61 66

[4] Connes, Bernard Sur les coefficients des séries trigonométriques convergentes sphériquement C. R. Acad. Sci. Paris Sér. A-B 1976

[5] Hardy, G. H. Collected papers of G. H. Hardy (Including Joint papers with J. E. Littlewood and others). Vol. I 1966

[6] Mignotte, M. Intersection des images de certaines suites récurrentes linéaires Theoret. Comput. Sci. 1978 117 122

[7] Zygmund, A. On Fourier coefficients and transforms of functions of two variables Studia Math. 1974 189 201

Cité par Sources :