Intersection pairings in moduli spaces of holomorphic bundles on a Riemann surface
Electronic research announcements of the American Mathematical Society, Tome 01 (1995) no. 2, pp. 57-71.

Voir la notice de l'article provenant de la source American Mathematical Society

We outline a proof of formulas (found by Witten in 1992 using physical methods) for intersection pairings in the cohomology of the moduli space $M(n,d)$ of stable holomorphic vector bundles of rank $n$ and degree $d$ (assumed coprime) and fixed determinant on a Riemann surface of genus $g \ge 2$.
DOI : 10.1090/S1079-6762-95-02002-6

Jeffrey, Lisa 1 ; Kirwan, Frances 2

1 Lisa C. Jeffrey, Mathematics Department, Princeton University, Princeton, NJ 08544, USA
2 Frances C. Kirwan, Balliol College, Oxford OX1 3BJ, UK
@article{ERAAMS_1995_01_2_a1,
     author = {Jeffrey, Lisa and Kirwan, Frances},
     title = {Intersection pairings in moduli spaces of holomorphic bundles on a {Riemann} surface},
     journal = {Electronic research announcements of the American Mathematical Society},
     pages = {57--71},
     publisher = {mathdoc},
     volume = {01},
     number = {2},
     year = {1995},
     doi = {10.1090/S1079-6762-95-02002-6},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-95-02002-6/}
}
TY  - JOUR
AU  - Jeffrey, Lisa
AU  - Kirwan, Frances
TI  - Intersection pairings in moduli spaces of holomorphic bundles on a Riemann surface
JO  - Electronic research announcements of the American Mathematical Society
PY  - 1995
SP  - 57
EP  - 71
VL  - 01
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-95-02002-6/
DO  - 10.1090/S1079-6762-95-02002-6
ID  - ERAAMS_1995_01_2_a1
ER  - 
%0 Journal Article
%A Jeffrey, Lisa
%A Kirwan, Frances
%T Intersection pairings in moduli spaces of holomorphic bundles on a Riemann surface
%J Electronic research announcements of the American Mathematical Society
%D 1995
%P 57-71
%V 01
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-95-02002-6/
%R 10.1090/S1079-6762-95-02002-6
%F ERAAMS_1995_01_2_a1
Jeffrey, Lisa; Kirwan, Frances. Intersection pairings in moduli spaces of holomorphic bundles on a Riemann surface. Electronic research announcements of the American Mathematical Society, Tome 01 (1995) no. 2, pp. 57-71. doi : 10.1090/S1079-6762-95-02002-6. http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-95-02002-6/

[1] Atiyah, M. F., Bott, R. The Yang-Mills equations over Riemann surfaces Philos. Trans. Roy. Soc. London Ser. A 1983 523 615

[2] Atiyah, M. F., Bott, R. The moment map and equivariant cohomology Topology 1984 1 28

[3] Berline, Nicole, Getzler, Ezra, Vergne, Michèle Heat kernels and Dirac operators 1992

[4] Berline, Nicole, Vergne, Michèle Classes caractéristiques équivariantes. Formule de localisation en cohomologie équivariante C. R. Acad. Sci. Paris Sér. I Math. 1982 539 541

[5] Berline, Nicole, Vergne, Michèle Zéros d’un champ de vecteurs et classes caractéristiques équivariantes Duke Math. J. 1983 539 549

[6] Bröcker, Theodor, Tom Dieck, Tammo Representations of compact Lie groups 1985

[7] Donaldson, S. K. Gluing techniques in the cohomology of moduli spaces 1993 137 170

[8] Duistermaat, J. J., Heckman, G. J. On the variation in the cohomology of the symplectic form of the reduced phase space Invent. Math. 1982 259 268

[9] Duflo, Michel, Vergne, Michèle Orbites coadjointes et cohomologie équivariante 1990 11 60

[10] Helgason, Sigurdur Differential geometry, Lie groups, and symmetric spaces 1978

[11] Hörmander, Lars The analysis of linear partial differential operators. I 1983

[12] Jeffrey, Lisa C. Extended moduli spaces of flat connections on Riemann surfaces Math. Ann. 1994 667 692

[13] Kirwan, Frances Clare Cohomology of quotients in symplectic and algebraic geometry 1984

[14] Kirwan, Frances The cohomology rings of moduli spaces of bundles over Riemann surfaces J. Amer. Math. Soc. 1992 853 906

[15] Narasimhan, M. S., Seshadri, C. S. Stable and unitary vector bundles on a compact Riemann surface Ann. of Math. (2) 1965 540 567

[16] Thaddeus, Michael Conformal field theory and the cohomology of the moduli space of stable bundles J. Differential Geom. 1992 131 149

[17] Witten, Edward On quantum gauge theories in two dimensions Comm. Math. Phys. 1991 153 209

[18] Witten, Edward Two-dimensional gauge theories revisited J. Geom. Phys. 1992 303 368

Cité par Sources :