Voir la notice de l'article provenant de la source American Mathematical Society
Jeffrey, Lisa 1 ; Kirwan, Frances 2
@article{ERAAMS_1995_01_2_a1, author = {Jeffrey, Lisa and Kirwan, Frances}, title = {Intersection pairings in moduli spaces of holomorphic bundles on a {Riemann} surface}, journal = {Electronic research announcements of the American Mathematical Society}, pages = {57--71}, publisher = {mathdoc}, volume = {01}, number = {2}, year = {1995}, doi = {10.1090/S1079-6762-95-02002-6}, url = {http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-95-02002-6/} }
TY - JOUR AU - Jeffrey, Lisa AU - Kirwan, Frances TI - Intersection pairings in moduli spaces of holomorphic bundles on a Riemann surface JO - Electronic research announcements of the American Mathematical Society PY - 1995 SP - 57 EP - 71 VL - 01 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-95-02002-6/ DO - 10.1090/S1079-6762-95-02002-6 ID - ERAAMS_1995_01_2_a1 ER -
%0 Journal Article %A Jeffrey, Lisa %A Kirwan, Frances %T Intersection pairings in moduli spaces of holomorphic bundles on a Riemann surface %J Electronic research announcements of the American Mathematical Society %D 1995 %P 57-71 %V 01 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-95-02002-6/ %R 10.1090/S1079-6762-95-02002-6 %F ERAAMS_1995_01_2_a1
Jeffrey, Lisa; Kirwan, Frances. Intersection pairings in moduli spaces of holomorphic bundles on a Riemann surface. Electronic research announcements of the American Mathematical Society, Tome 01 (1995) no. 2, pp. 57-71. doi : 10.1090/S1079-6762-95-02002-6. http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-95-02002-6/
[1] The Yang-Mills equations over Riemann surfaces Philos. Trans. Roy. Soc. London Ser. A 1983 523 615
,[2] The moment map and equivariant cohomology Topology 1984 1 28
,[3] Heat kernels and Dirac operators 1992
, ,[4] Classes caractéristiques équivariantes. Formule de localisation en cohomologie équivariante C. R. Acad. Sci. Paris Sér. I Math. 1982 539 541
,[5] Zéros d’un champ de vecteurs et classes caractéristiques équivariantes Duke Math. J. 1983 539 549
,[6] Representations of compact Lie groups 1985
,[7] Gluing techniques in the cohomology of moduli spaces 1993 137 170
[8] On the variation in the cohomology of the symplectic form of the reduced phase space Invent. Math. 1982 259 268
,[9] Orbites coadjointes et cohomologie équivariante 1990 11 60
,[10] Differential geometry, Lie groups, and symmetric spaces 1978
[11] The analysis of linear partial differential operators. I 1983
[12] Extended moduli spaces of flat connections on Riemann surfaces Math. Ann. 1994 667 692
[13] Cohomology of quotients in symplectic and algebraic geometry 1984
[14] The cohomology rings of moduli spaces of bundles over Riemann surfaces J. Amer. Math. Soc. 1992 853 906
[15] Stable and unitary vector bundles on a compact Riemann surface Ann. of Math. (2) 1965 540 567
,[16] Conformal field theory and the cohomology of the moduli space of stable bundles J. Differential Geom. 1992 131 149
[17] On quantum gauge theories in two dimensions Comm. Math. Phys. 1991 153 209
[18] Two-dimensional gauge theories revisited J. Geom. Phys. 1992 303 368
Cité par Sources :