The intrinsic invariant of an approximately finite dimensional factor and the cocycle conjugacy of discrete amenable group actions
Electronic research announcements of the American Mathematical Society, Tome 01 (1995) no. 1, pp. 43-47.

Voir la notice de l'article provenant de la source American Mathematical Society

We announce in this article that i) to each approximately finite dimensional factor $\mathcal {R}$ of any type there corresponds canonically a group cohomological invariant, to be called the intrinsic invariant of $\mathcal {R}$ and denoted $\Theta (\mathcal {R})$, on which $\operatorname {Aut}(\mathcal {R})$ acts canonically; ii) when a group $G$ acts on $\mathcal {R}$ via $\alpha : G \mapsto \operatorname {Aut}(\mathcal {R})$, the pull back of Orb($\Theta (\mathcal {R})$), the orbit of $\Theta (\mathcal {R})$ under $\operatorname {Aut}(\mathcal {R})$, by $\alpha$ is a cocycle conjugacy invariant of $\alpha$; iii) if $G$ is a discrete countable amenable group, then the pair of the module, mod($\alpha$), and the above pull back is a complete invariant for the cocycle conjugacy class of $\alpha$. This result settles the open problem of the general cocycle conjugacy classification of discrete amenable group actions on an AFD factor of type $\mathrm {III}_1$, and unifies known results for other types.
DOI : 10.1090/S1079-6762-95-01006-7

Katayama, Yoshikazu 1 ; Sutherland, Colin 2 ; Takesaki, Masamichi 3

1 address Yoshikazu Katayama, Department of Mathematics, Osaka Kyoiku University, Osaka, Japan.
2 address Colin E. Sutherland, Department of Mathematics, University of New South Wales, Kensington, NSW, Australia.
3 Department of Mathematics, University of California, Los Angeles, Califnornia 90024-1555.
@article{ERAAMS_1995_01_1_a5,
     author = {Katayama, Yoshikazu and Sutherland, Colin and Takesaki, Masamichi},
     title = {The intrinsic invariant of an approximately finite dimensional factor and the cocycle conjugacy of discrete amenable group actions},
     journal = {Electronic research announcements of the American Mathematical Society},
     pages = {43--47},
     publisher = {mathdoc},
     volume = {01},
     number = {1},
     year = {1995},
     doi = {10.1090/S1079-6762-95-01006-7},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-95-01006-7/}
}
TY  - JOUR
AU  - Katayama, Yoshikazu
AU  - Sutherland, Colin
AU  - Takesaki, Masamichi
TI  - The intrinsic invariant of an approximately finite dimensional factor and the cocycle conjugacy of discrete amenable group actions
JO  - Electronic research announcements of the American Mathematical Society
PY  - 1995
SP  - 43
EP  - 47
VL  - 01
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-95-01006-7/
DO  - 10.1090/S1079-6762-95-01006-7
ID  - ERAAMS_1995_01_1_a5
ER  - 
%0 Journal Article
%A Katayama, Yoshikazu
%A Sutherland, Colin
%A Takesaki, Masamichi
%T The intrinsic invariant of an approximately finite dimensional factor and the cocycle conjugacy of discrete amenable group actions
%J Electronic research announcements of the American Mathematical Society
%D 1995
%P 43-47
%V 01
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-95-01006-7/
%R 10.1090/S1079-6762-95-01006-7
%F ERAAMS_1995_01_1_a5
Katayama, Yoshikazu; Sutherland, Colin; Takesaki, Masamichi. The intrinsic invariant of an approximately finite dimensional factor and the cocycle conjugacy of discrete amenable group actions. Electronic research announcements of the American Mathematical Society, Tome 01 (1995) no. 1, pp. 43-47. doi : 10.1090/S1079-6762-95-01006-7. http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-95-01006-7/

[1] Connes, Alain Outer conjugacy classes of automorphisms of factors Ann. Sci. École Norm. Sup. (4) 1975 383 419

[2] Connes, A. On the classification of von Neumann algebras and their automorphisms 1976 435 478

[3] Connes, A. Periodic automorphisms of the hyperfinite factor of type II1 Acta Sci. Math. (Szeged) 1977 39 66

[4] Connes, A. Factors of type 𝐼𝐼𝐼₁, property 𝐿_{𝜆}’ and closure of inner automorphisms J. Operator Theory 1985 189 211

[5] Connes, Alain, Takesaki, Masamichi The flow of weights on factors of type 𝐼𝐼𝐼 Tohoku Math. J. (2) 1977 473 575

[6] Haagerup, Uffe Connes’ bicentralizer problem and uniqueness of the injective factor of type 𝐼𝐼𝐼₁ Acta Math. 1987 95 148

[7] Haagerup, Uffe, Størmer, Erling Pointwise inner automorphisms of von Neumann algebras J. Funct. Anal. 1990 177 201

[8] Jones, Vaughan F. R. Actions of finite groups on the hyperfinite type 𝐼𝐼₁ factor Mem. Amer. Math. Soc. 1980

[9] Jones, V. F. R., Takesaki, M. Actions of compact abelian groups on semifinite injective factors Acta Math. 1984 213 258

[10] Kawahigashi, Y., Sutherland, C. E., Takesaki, M. The structure of the automorphism group of an injective factor and the cocycle conjugacy of discrete abelian group actions Acta Math. 1992 105 130

[11] Ocneanu, Adrian Actions of discrete amenable groups on von Neumann algebras 1985

[12] Sutherland, Colin E., Takesaki, Masamichi Actions of discrete amenable groups and groupoids on von Neumann algebras Publ. Res. Inst. Math. Sci. 1985 1087 1120

[13] Sutherland, Colin E., Takesaki, Masamichi Actions of discrete amenable groups on injective factors of type 𝐼𝐼𝐼_{𝜆},𝜆≠1 Pacific J. Math. 1989 405 444

Cité par Sources :