Parity of the partition function
Electronic research announcements of the American Mathematical Society, Tome 01 (1995) no. 1, pp. 35-42.

Voir la notice de l'article provenant de la source American Mathematical Society

Let $p(n)$ denote the number of partitions of a non-negative integer $n$. A well-known conjecture asserts that every arithmetic progression contains infinitely many integers $M$ for which $p(M)$ is odd, as well as infinitely many integers $N$ for which $p(N)$ is even (see Subbarao [22]). From the works of various authors, this conjecture has been verified for every arithmetic progression with modulus $t$ when $t=1,2,3,4,5,10,12,16,$ and $40.$ Here we announce that there indeed are infinitely many integers $N$ in every arithmetic progression for which $p(N)$ is even; and that there are infinitely many integers $M$ in every arithmetic progression for which $p(M)$ is odd so long as there is at least one such $M$. In fact if there is such an $M$, then the smallest such $M\leq 10^{10}t^7$. Using these results and a fair bit of machine computation, we have verified the conjecture for every arithmetic progression with modulus $t\leq 100,000$.
DOI : 10.1090/S1079-6762-95-01005-5

Ono, Ken 1

1 address Department of Mathematics, The University of Illinois, Urbana, Illinois 61801
@article{ERAAMS_1995_01_1_a4,
     author = {Ono, Ken},
     title = {Parity of the partition function},
     journal = {Electronic research announcements of the American Mathematical Society},
     pages = {35--42},
     publisher = {mathdoc},
     volume = {01},
     number = {1},
     year = {1995},
     doi = {10.1090/S1079-6762-95-01005-5},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-95-01005-5/}
}
TY  - JOUR
AU  - Ono, Ken
TI  - Parity of the partition function
JO  - Electronic research announcements of the American Mathematical Society
PY  - 1995
SP  - 35
EP  - 42
VL  - 01
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-95-01005-5/
DO  - 10.1090/S1079-6762-95-01005-5
ID  - ERAAMS_1995_01_1_a4
ER  - 
%0 Journal Article
%A Ono, Ken
%T Parity of the partition function
%J Electronic research announcements of the American Mathematical Society
%D 1995
%P 35-42
%V 01
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-95-01005-5/
%R 10.1090/S1079-6762-95-01005-5
%F ERAAMS_1995_01_1_a4
Ono, Ken. Parity of the partition function. Electronic research announcements of the American Mathematical Society, Tome 01 (1995) no. 1, pp. 35-42. doi : 10.1090/S1079-6762-95-01005-5. http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-95-01005-5/

[1] Andrews, George E. The theory of partitions 1976

[2] Andrews, George E., Garvan, F. G. Dyson’s crank of a partition Bull. Amer. Math. Soc. (N.S.) 1988 167 171

[3] Atkin, A. O. L. Proof of a conjecture of Ramanujan Glasgow Math. J. 1967 14 32

[4] Garvan, F. G. A simple proof of Watson’s partition congruences for powers of 7 J. Austral. Math. Soc. Ser. A 1984 316 334

[5] Garvan, F. G. New combinatorial interpretations of Ramanujan’s partition congruences mod 5,7 and 11 Trans. Amer. Math. Soc. 1988 47 77

[6] Garvan, Frank, Stanton, Dennis Sieved partition functions and 𝑞-binomial coefficients Math. Comp. 1990 299 311

[7] Garvan, Frank, Kim, Dongsu, Stanton, Dennis Cranks and 𝑡-cores Invent. Math. 1990 1 17

[8] Gordon, Basil, Hughes, Kim Multiplicative properties of 𝜂-products. II 1993 415 430

[9] Hirschhorn, M. D. On the residue mod 2 and mod 4 of 𝑝(𝑛) Acta Arith. 1980/81 105 109

[10] Hirschhorn, M. D. On the parity of 𝑝(𝑛). II J. Combin. Theory Ser. A 1993 128 138

[11] Hirschhorn, M. D. Ramanujan’s partition congruences Discrete Math. 1994 351 355

[12] Hirschhorn, Michael D., Hunt, David C. A simple proof of the Ramanujan conjecture for powers of 5 J. Reine Angew. Math. 1981 1 17

[13] Hirschhorn, M. D., Subbarao, M. V. On the parity of 𝑝(𝑛) Acta Arith. 1988 355 356

[14] Knopp, Marvin I. Modular functions in analytic number theory 1970

[15] Koblitz, Neal Introduction to elliptic curves and modular forms 1984

[16] Kolberg, O. Note on the parity of the partition function Math. Scand. 1959 377 378

[17] Newman, Morris Construction and application of a class of modular functions. II Proc. London Math. Soc. (3) 1959 373 387

[18] Parkin, Thomas R., Shanks, Daniel On the distribution of parity in the partition function Math. Comp. 1967 466 480

[19] Serre, Jean-Pierre Divisibilité des coefficients des formes modulaires de poids entier C. R. Acad. Sci. Paris Sér. A 1974 679 682

[20] Sturm, Jacob On the congruence of modular forms 1987 275 280

[21] Subbarao, M. V. Some remarks on the partition function Amer. Math. Monthly 1966 851 854

Cité par Sources :