On non-separating simple closed curves in a compact surface
Electronic research announcements of the American Mathematical Society, Tome 01 (1995) no. 1, pp. 18-25.

Voir la notice de l'article provenant de la source American Mathematical Society

We introduce a semi-algebraic structure on the set $\mathcal {S}$ of all isotopy classes of non-separating simple closed curves in any compact oriented surface and show that the structure is finitely generated. As a consequence, we produce a natural finite dimensional linear representation of the mapping class group of the surface. Applications to the Teichmüller space, Thurston’s measured lamination space, the harmonic Beltrami differentials, and the first cohomology group of the surface are discussed.
@article{ERAAMS_1995_01_1_a2,
     author = {Luo, Feng},
     title = {On non-separating simple closed curves in a compact surface},
     journal = {Electronic research announcements of the American Mathematical Society},
     pages = {18--25},
     publisher = {mathdoc},
     volume = {01},
     number = {1},
     year = {1995},
     doi = {10.1090/S1079-6762-95-01003-1},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-95-01003-1/}
}
TY  - JOUR
AU  - Luo, Feng
TI  - On non-separating simple closed curves in a compact surface
JO  - Electronic research announcements of the American Mathematical Society
PY  - 1995
SP  - 18
EP  - 25
VL  - 01
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-95-01003-1/
DO  - 10.1090/S1079-6762-95-01003-1
ID  - ERAAMS_1995_01_1_a2
ER  - 
%0 Journal Article
%A Luo, Feng
%T On non-separating simple closed curves in a compact surface
%J Electronic research announcements of the American Mathematical Society
%D 1995
%P 18-25
%V 01
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-95-01003-1/
%R 10.1090/S1079-6762-95-01003-1
%F ERAAMS_1995_01_1_a2
Luo, Feng. On non-separating simple closed curves in a compact surface. Electronic research announcements of the American Mathematical Society, Tome 01 (1995) no. 1, pp. 18-25. doi : 10.1090/S1079-6762-95-01003-1. http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-95-01003-1/

[1] Dehn, Max Papers on group theory and topology 1987

[2] Travaux de Thurston sur les surfaces 1979 284

[3] Lickorish, W. B. R. A representation of orientable combinatorial 3-manifolds Ann. of Math. (2) 1962 531 540

[4] Humphries, Stephen P. Generators for the mapping class group 1979 44 47

Cité par Sources :