Crooked planes
Electronic research announcements of the American Mathematical Society, Tome 01 (1995) no. 1, pp. 10-17.

Voir la notice de l'article provenant de la source American Mathematical Society

Crooked planes are polyhedra used to construct fundamental polyhedra for discrete groups of Lorentz isometries acting properly on Minkowski (2+1)-space. These fundamental polyhedra are regions bounded by disjoint crooked planes. We develop criteria for the intersection of crooked planes and apply these criteria to proper discontinuity of discrete isometry groups.
@article{ERAAMS_1995_01_1_a1,
     author = {Drumm, Todd and Goldman, William},
     title = {Crooked planes},
     journal = {Electronic research announcements of the American Mathematical Society},
     pages = {10--17},
     publisher = {mathdoc},
     volume = {01},
     number = {1},
     year = {1995},
     doi = {10.1090/S1079-6762-95-01002-X},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-95-01002-X/}
}
TY  - JOUR
AU  - Drumm, Todd
AU  - Goldman, William
TI  - Crooked planes
JO  - Electronic research announcements of the American Mathematical Society
PY  - 1995
SP  - 10
EP  - 17
VL  - 01
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-95-01002-X/
DO  - 10.1090/S1079-6762-95-01002-X
ID  - ERAAMS_1995_01_1_a1
ER  - 
%0 Journal Article
%A Drumm, Todd
%A Goldman, William
%T Crooked planes
%J Electronic research announcements of the American Mathematical Society
%D 1995
%P 10-17
%V 01
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-95-01002-X/
%R 10.1090/S1079-6762-95-01002-X
%F ERAAMS_1995_01_1_a1
Drumm, Todd; Goldman, William. Crooked planes. Electronic research announcements of the American Mathematical Society, Tome 01 (1995) no. 1, pp. 10-17. doi : 10.1090/S1079-6762-95-01002-X. http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-95-01002-X/

[1] Auslander, L., Markus, L. Flat Lorentz 3-manifolds Mem. Amer. Math. Soc. 1959 60

[2] Drumm, Todd A. Fundamental polyhedra for Margulis space-times Topology 1992 677 683

[3] Drumm, Todd A. Fundamental polyhedra for Margulis space-times Topology 1992 677 683

[4] Drumm, Todd A. Examples of nonproper affine actions Michigan Math. J. 1992 435 442

[5] Differential geometry: geometry in mathematical physics and related topics 1993

[6] Drumm, Todd A., Goldman, William M. Complete flat Lorentz 3-manifolds with free fundamental group Internat. J. Math. 1990 149 161

[7] Fried, David, Goldman, William M. Three-dimensional affine crystallographic groups Adv. in Math. 1983 1 49

[8] Margulis, G. A. Complete affine locally flat manifolds with a free fundamental group Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 1984 190 205

[9] Tits, J. Free subgroups in linear groups J. Algebra 1972 250 270

Cité par Sources :