Probabilistic and numerical validation of homology computations for nodal domains
Electronic research announcements of the American Mathematical Society, Tome 13 (2007), pp. 60-73.

Voir la notice de l'article provenant de la source American Mathematical Society

Homology has long been accepted as an important computable tool for quantifying complex structures. In many applications these structures arise as nodal domains of real-valued functions and are therefore amenable only to a numerical study, based on suitable discretizations. Such an approach immediately raises the question of how accurate the resulting homology computations are. In this paper we present a probabilistic approach to quantifying the validity of homology computations for nodal domains of random Fourier series in one and two space dimensions, which furnishes explicit probabilistic a-priori bounds for the suitability of certain discretization sizes. In addition, we introduce a numerical method for verifying the homology computation using interval arithmetic.
DOI : 10.1090/S1079-6762-07-00175-8

Day, Sarah 1 ; Kalies, William 2 ; Mischaikow, Konstantin 3 ; Wanner, Thomas 4

1 College of William and Mary, Department of Mathematics, P.O. Box 8795, Williamsburg, VA 23187
2 Department of Mathematical Sciences, Florida Atlantic University, 777 Glades Road, Boca Raton, FL 33431
3 Department of Mathematics, Rutgers University, 110 Frelinghusen Road, Piscataway, NJ 08854
4 Department of Mathematical Sciences, George Mason University, 4400 University Drive, MS 3F2, Fairfax, VA 22030
@article{ERAAMS_2007_13_a6,
     author = {Day, Sarah and Kalies, William and Mischaikow, Konstantin and Wanner, Thomas},
     title = {Probabilistic and numerical validation of homology computations for nodal domains},
     journal = {Electronic research announcements of the American Mathematical Society},
     pages = {60--73},
     publisher = {mathdoc},
     volume = {13},
     year = {2007},
     doi = {10.1090/S1079-6762-07-00175-8},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-07-00175-8/}
}
TY  - JOUR
AU  - Day, Sarah
AU  - Kalies, William
AU  - Mischaikow, Konstantin
AU  - Wanner, Thomas
TI  - Probabilistic and numerical validation of homology computations for nodal domains
JO  - Electronic research announcements of the American Mathematical Society
PY  - 2007
SP  - 60
EP  - 73
VL  - 13
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-07-00175-8/
DO  - 10.1090/S1079-6762-07-00175-8
ID  - ERAAMS_2007_13_a6
ER  - 
%0 Journal Article
%A Day, Sarah
%A Kalies, William
%A Mischaikow, Konstantin
%A Wanner, Thomas
%T Probabilistic and numerical validation of homology computations for nodal domains
%J Electronic research announcements of the American Mathematical Society
%D 2007
%P 60-73
%V 13
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-07-00175-8/
%R 10.1090/S1079-6762-07-00175-8
%F ERAAMS_2007_13_a6
Day, Sarah; Kalies, William; Mischaikow, Konstantin; Wanner, Thomas. Probabilistic and numerical validation of homology computations for nodal domains. Electronic research announcements of the American Mathematical Society, Tome 13 (2007), pp. 60-73. doi : 10.1090/S1079-6762-07-00175-8. http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-07-00175-8/

[1] Adler, Robert J. The geometry of random fields 1981

[2] Bharucha-Reid, A. T., Sambandham, M. Random polynomials 1986

[3] Blömker, Dirk, Maier-Paape, Stanislaus, Wanner, Thomas Spinodal decomposition for the Cahn-Hilliard-Cook equation Comm. Math. Phys. 2001 553 582

[4] Donoho, David L., Grimes, Carrie Hessian eigenmaps: locally linear embedding techniques for high-dimensional data Proc. Natl. Acad. Sci. USA 2003 5591 5596

[5] Dunnage, J. E. A. The number of real zeros of a random trigonometric polynomial Proc. London Math. Soc. (3) 1966 53 84

[6] Farahmand, Kambiz Topics in random polynomials 1998

[7] Gameiro, Marcio, Mischaikow, Konstantin, Kalies, William Topological characterization of spatial-temporal chaos Phys. Rev. E (3) 2004

[8] Kaczynski, Tomasz, Mischaikow, Konstantin, Mrozek, Marian Computational homology 2004

[9] Kahane, Jean-Pierre Some random series of functions 1985

[10] Marcus, Michael B., Pisier, Gilles Random Fourier series with applications to harmonic analysis 1981

[11] Sander, Evelyn, Wanner, Thomas Monte Carlo simulations for spinodal decomposition J. Statist. Phys. 1999 925 948

[12] Sander, Evelyn, Wanner, Thomas Unexpectedly linear behavior for the Cahn-Hilliard equation SIAM J. Appl. Math. 2000 2182 2202

[13] Wanner, Thomas Maximum norms of random sums and transient pattern formation Trans. Amer. Math. Soc. 2004 2251 2279

Cité par Sources :