Voir la notice de l'article provenant de la source American Mathematical Society
Su, Bo 1 ; Burger, Martin 2
@article{ERAAMS_2007_13_a4, author = {Su, Bo and Burger, Martin}, title = {Global weak solutions of non-isothermal front propagation problem}, journal = {Electronic research announcements of the American Mathematical Society}, pages = {46--52}, publisher = {mathdoc}, volume = {13}, year = {2007}, doi = {10.1090/S1079-6762-07-00173-4}, url = {http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-07-00173-4/} }
TY - JOUR AU - Su, Bo AU - Burger, Martin TI - Global weak solutions of non-isothermal front propagation problem JO - Electronic research announcements of the American Mathematical Society PY - 2007 SP - 46 EP - 52 VL - 13 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-07-00173-4/ DO - 10.1090/S1079-6762-07-00173-4 ID - ERAAMS_2007_13_a4 ER -
%0 Journal Article %A Su, Bo %A Burger, Martin %T Global weak solutions of non-isothermal front propagation problem %J Electronic research announcements of the American Mathematical Society %D 2007 %P 46-52 %V 13 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-07-00173-4/ %R 10.1090/S1079-6762-07-00173-4 %F ERAAMS_2007_13_a4
Su, Bo; Burger, Martin. Global weak solutions of non-isothermal front propagation problem. Electronic research announcements of the American Mathematical Society, Tome 13 (2007), pp. 46-52. doi : 10.1090/S1079-6762-07-00173-4. http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-07-00173-4/
[1] Front propagation and phase field theory SIAM J. Control Optim. 1993 439 469
, ,[2] Crystal growth and impingement in polymer melts 2004 65 74
[3] Growth of multiple crystals in polymer melts European J. Appl. Math. 2004 347 363
[4] Mathematical modelling and simulation of non-isothermal crystallization of polymers Math. Models Methods Appl. Sci. 2001 1029 1053
,[5] Modelling of polymer crystallization in temperature fields ZAMM Z. Angew. Math. Mech. 2002 51 63
, ,[6] Modelling multi-dimensional crystallization of polymers in interaction with heat transfer Nonlinear Anal. Real World Appl. 2002 139 160
, ,[7] Continuity of the temperature in the two-phase Stefan problem Arch. Rational Mech. Anal. 1983 199 220
,[8] Stochastic birth-and-growth processes modelling crystallization of polymers with spatially heterogeneous parameters Nonlinear Anal. Real World Appl. 2000 485 498
,[9] Discontinuous solutions in 𝐿^{∞} for Hamilton-Jacobi equations Chinese Ann. Math. Ser. B 2000 165 186
,[10] On global discontinuous solutions of Hamilton-Jacobi equations C. R. Math. Acad. Sci. Paris 2002 113 118
,[11] Discontinuous solutions for Hamilton-Jacobi equations: uniqueness and regularity Discrete Contin. Dyn. Syst. 2003 167 192
,[12] Viscosity solutions of Hamilton-Jacobi equations Trans. Amer. Math. Soc. 1983 1 42
,[13] Continuity of weak solutions to certain singular parabolic equations Ann. Mat. Pura Appl. (4) 1982 131 176
[14] Measure theory and fine properties of functions 1992
,[15] Variational principles and free-boundary problems 1982
[16] A free boundary problem associated with crystallization of polymers in a temperature field Indiana Univ. Math. J. 2001 1609 1649
,[17] Lineĭ nye i kvazilineĭ nye uravneniya parabolicheskogo tipa 1967 736
, ,[18] Generalized solutions of Hamilton-Jacobi equations 1982
[19] The Stefan problem 1992
[20] Stochastic and deterministic simulation of nonisothermal crystallization of polymers J. Math. Chem. 2001 169 193
,[21] The stochastic geometry of polymer crystallization processes Stochastic Anal. Appl. 1997 355 373
,[22] Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations J. Comput. Phys. 1988 12 49
,[23] Continuity of solutions of a singular parabolic equation Nonlinear Anal. 1983 387 409
[24] Models of phase transitions 1996
[25] Interior and boundary continuity of weak solutions of degenerate parabolic equations Trans. Amer. Math. Soc. 1982 733 748
Cité par Sources :