Global weak solutions of non-isothermal front propagation problem
Electronic research announcements of the American Mathematical Society, Tome 13 (2007), pp. 46-52.

Voir la notice de l'article provenant de la source American Mathematical Society

We show the global existence of weak solutions for a free-boundary problem arising in the non-isothermal crystallization of polymers. In particular, the free interface is shown to be of codimension one for every time $t$ in two space dimensions; Hölder continuity of the temperature $u$ is proven.
DOI : 10.1090/S1079-6762-07-00173-4

Su, Bo 1 ; Burger, Martin 2

1 Department of Mathematics, Iowa State University, Ames, Iowa 50011
2 Industrial Mathematics Institute, Johannes Kepler University, Altenbergerstr. 69, A 4040 Linz, Austria
@article{ERAAMS_2007_13_a4,
     author = {Su, Bo and Burger, Martin},
     title = {Global weak solutions of non-isothermal front propagation problem},
     journal = {Electronic research announcements of the American Mathematical Society},
     pages = {46--52},
     publisher = {mathdoc},
     volume = {13},
     year = {2007},
     doi = {10.1090/S1079-6762-07-00173-4},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-07-00173-4/}
}
TY  - JOUR
AU  - Su, Bo
AU  - Burger, Martin
TI  - Global weak solutions of non-isothermal front propagation problem
JO  - Electronic research announcements of the American Mathematical Society
PY  - 2007
SP  - 46
EP  - 52
VL  - 13
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-07-00173-4/
DO  - 10.1090/S1079-6762-07-00173-4
ID  - ERAAMS_2007_13_a4
ER  - 
%0 Journal Article
%A Su, Bo
%A Burger, Martin
%T Global weak solutions of non-isothermal front propagation problem
%J Electronic research announcements of the American Mathematical Society
%D 2007
%P 46-52
%V 13
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-07-00173-4/
%R 10.1090/S1079-6762-07-00173-4
%F ERAAMS_2007_13_a4
Su, Bo; Burger, Martin. Global weak solutions of non-isothermal front propagation problem. Electronic research announcements of the American Mathematical Society, Tome 13 (2007), pp. 46-52. doi : 10.1090/S1079-6762-07-00173-4. http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-07-00173-4/

[1] Barles, G., Soner, H. M., Souganidis, P. E. Front propagation and phase field theory SIAM J. Control Optim. 1993 439 469

[2] Burger, Martin Crystal growth and impingement in polymer melts 2004 65 74

[3] Burger, M. Growth of multiple crystals in polymer melts European J. Appl. Math. 2004 347 363

[4] Burger, Martin, Capasso, Vincenzo Mathematical modelling and simulation of non-isothermal crystallization of polymers Math. Models Methods Appl. Sci. 2001 1029 1053

[5] Burger, M., Capasso, V., Eder, G. Modelling of polymer crystallization in temperature fields ZAMM Z. Angew. Math. Mech. 2002 51 63

[6] Burger, Martin, Capasso, Vincenzo, Salani, Claudia Modelling multi-dimensional crystallization of polymers in interaction with heat transfer Nonlinear Anal. Real World Appl. 2002 139 160

[7] Caffarelli, L. A., Evans, L. C. Continuity of the temperature in the two-phase Stefan problem Arch. Rational Mech. Anal. 1983 199 220

[8] Capasso, V., Salani, C. Stochastic birth-and-growth processes modelling crystallization of polymers with spatially heterogeneous parameters Nonlinear Anal. Real World Appl. 2000 485 498

[9] Chen, Guiqiang, Su, Bo Discontinuous solutions in 𝐿^{∞} for Hamilton-Jacobi equations Chinese Ann. Math. Ser. B 2000 165 186

[10] Chen, Gui-Qiang, Su, Bo On global discontinuous solutions of Hamilton-Jacobi equations C. R. Math. Acad. Sci. Paris 2002 113 118

[11] Chen, Gui-Qiang, Su, Bo Discontinuous solutions for Hamilton-Jacobi equations: uniqueness and regularity Discrete Contin. Dyn. Syst. 2003 167 192

[12] Crandall, Michael G., Lions, Pierre-Louis Viscosity solutions of Hamilton-Jacobi equations Trans. Amer. Math. Soc. 1983 1 42

[13] Dibenedetto, Emmanuele Continuity of weak solutions to certain singular parabolic equations Ann. Mat. Pura Appl. (4) 1982 131 176

[14] Evans, Lawrence C., Gariepy, Ronald F. Measure theory and fine properties of functions 1992

[15] Friedman, Avner Variational principles and free-boundary problems 1982

[16] Friedman, Avner, Velázquez, Juan J. L. A free boundary problem associated with crystallization of polymers in a temperature field Indiana Univ. Math. J. 2001 1609 1649

[17] Ladyženskaja, O. A., Solonnikov, V. A., Ural′Ceva, N. N. Lineĭ nye i kvazilineĭ nye uravneniya parabolicheskogo tipa 1967 736

[18] Lions, Pierre-Louis Generalized solutions of Hamilton-Jacobi equations 1982

[19] Meirmanov, Anvarbek M. The Stefan problem 1992

[20] Micheletti, Alessandra, Burger, Martin Stochastic and deterministic simulation of nonisothermal crystallization of polymers J. Math. Chem. 2001 169 193

[21] Micheletti, A., Capasso, V. The stochastic geometry of polymer crystallization processes Stochastic Anal. Appl. 1997 355 373

[22] Osher, Stanley, Sethian, James A. Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations J. Comput. Phys. 1988 12 49

[23] Sacks, Paul E. Continuity of solutions of a singular parabolic equation Nonlinear Anal. 1983 387 409

[24] Visintin, Augusto Models of phase transitions 1996

[25] Ziemer, William P. Interior and boundary continuity of weak solutions of degenerate parabolic equations Trans. Amer. Math. Soc. 1982 733 748

Cité par Sources :