Classification of eight-dimensional perfect forms
Electronic research announcements of the American Mathematical Society, Tome 13 (2007), pp. 21-32.

Voir la notice de l'article provenant de la source American Mathematical Society

In this paper, we classify the perfect lattices in dimension $8$. There are $10916$ of them. Our classification heavily relies on exploiting symmetry in polyhedral computations. Here we describe algorithms making the classification possible.
DOI : 10.1090/S1079-6762-07-00171-0

Sikirić, Mathieu 1 ; Schürmann, Achill 2 ; Vallentin, Frank 3

1 Institut Rudjer Bos̆ković, Zagreb, Croatia
2 Otto-von-Guericke-University, Magdeburg, Germany
3 CWI, Amsterdam, The Netherlands
@article{ERAAMS_2007_13_a2,
     author = {Sikiri\'c, Mathieu and Sch\"urmann, Achill and Vallentin, Frank},
     title = {Classification of eight-dimensional perfect forms},
     journal = {Electronic research announcements of the American Mathematical Society},
     pages = {21--32},
     publisher = {mathdoc},
     volume = {13},
     year = {2007},
     doi = {10.1090/S1079-6762-07-00171-0},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-07-00171-0/}
}
TY  - JOUR
AU  - Sikirić, Mathieu
AU  - Schürmann, Achill
AU  - Vallentin, Frank
TI  - Classification of eight-dimensional perfect forms
JO  - Electronic research announcements of the American Mathematical Society
PY  - 2007
SP  - 21
EP  - 32
VL  - 13
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-07-00171-0/
DO  - 10.1090/S1079-6762-07-00171-0
ID  - ERAAMS_2007_13_a2
ER  - 
%0 Journal Article
%A Sikirić, Mathieu
%A Schürmann, Achill
%A Vallentin, Frank
%T Classification of eight-dimensional perfect forms
%J Electronic research announcements of the American Mathematical Society
%D 2007
%P 21-32
%V 13
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-07-00171-0/
%R 10.1090/S1079-6762-07-00171-0
%F ERAAMS_2007_13_a2
Sikirić, Mathieu; Schürmann, Achill; Vallentin, Frank. Classification of eight-dimensional perfect forms. Electronic research announcements of the American Mathematical Society, Tome 13 (2007), pp. 21-32. doi : 10.1090/S1079-6762-07-00171-0. http://geodesic.mathdoc.fr/articles/10.1090/S1079-6762-07-00171-0/

[1] Anzin, M. M. On the density of a lattice covering for 𝑛 Tr. Mat. Inst. Steklova 2002 20 51

[2] Ash, A., Mumford, D., Rapoport, M., Tai, Y. Smooth compactification of locally symmetric varieties 1975

[3] Balinski, M. L. On the graph structure of convex polyhedra in 𝑛-space Pacific J. Math. 1961 431 434

[4] Barnes, E. S. The complete enumeration of extreme senary forms Philos. Trans. Roy. Soc. London Ser. A 1957 461 506

[5] Blichfeldt, H. F. The minimum values of positive quadratic forms in six, seven and eight variables Math. Z. 1935 1 15

[6] Brinkmann, Gunnar Isomorphism rejection in structure generation programs 2000 25 38

[7] Chan, Clara S., Robbins, David P. On the volume of the polytope of doubly stochastic matrices Experiment. Math. 1999 291 300

[8] Christof, T., Reinelt, G. Combinatorial optimization and small polytopes Top 1996 1 64

[9] Cohen, Henri A course in computational algebraic number theory 1993

[10] Conway, J. H., Sloane, N. J. A. Sphere packings, lattices and groups 1999

[11] Conway, J. H., Sloane, N. J. A. Low-dimensional lattices. III. Perfect forms Proc. Roy. Soc. London Ser. A 1988 43 80

[12] Coxeter, H. S. M. Extreme forms Canad. J. Math. 1951 391 441

[13] Deza, Antoine, Fukuda, Komei, Pasechnik, Dmitrii, Sato, Masanori On the skeleton of the metric polytope 2001 125 136

[14] Jaquet-Chiffelle, David-Olivier Description des voisines de 𝐸₇,𝐷₇,𝐷₈ et 𝐷₉ Sém. Théor. Nombres Bordeaux (2) 1992 273 377

[15] Jaquet-Chiffelle, David-Olivier Énumération complète des classes de formes parfaites en dimension 7 Ann. Inst. Fourier (Grenoble) 1993 21 55

[16] Kaibel, Volker, Schwartz, Alexander On the complexity of polytope isomorphism problems Graphs Combin. 2003 215 230

[17] Kerber, Adalbert Applied finite group actions 1999

[18] Korkine, A., Zolotareff, G. Sur les formes quadratiques positives quaternaires Math. Ann. 1872 581 583

[19] Korkine, A., Zolotareff, G. Sur les formes quadratiques Math. Ann. 1873 366 389

[20] Korkinge, A., Zolotareff, G. Sur les formes quadratiques positives Math. Ann. 1877 242 292

[21] Computers in number theory 1971

[22] Martinet, Jacques Perfect lattices in Euclidean spaces 2003

[23] Mordell, L. J. Observation on the minimum of a positive quadratic form in eight variables J. London Math. Soc. 1944 3 6

[24] Plesken, W., Souvignier, B. Computing isometries of lattices J. Symbolic Comput. 1997 327 334

[25] Ryškov, S. S. The polyhedron 𝜇(𝑚) and certain extremal problems of the geometry of numbers Dokl. Akad. Nauk SSSR 1970 514 517

[26] Ryškov, S. S., Baranovskiĭ, E. P. Classical methods of the theory of lattice packings Uspekhi Mat. Nauk 1979

[27] Schrijver, Alexander Theory of linear and integer programming 1986

[28] Shepherd-Barron, N. I. Perfect forms and the moduli space of abelian varieties Invent. Math. 2006 25 45

[29] Soulé, C. Perfect forms and the Vandiver conjecture J. Reine Angew. Math. 1999 209 221

[30] Swart, Garret Finding the convex hull facet by facet J. Algorithms 1985 17 48

[31] Vetčinkin, N. M. Uniqueness of classes of positive quadratic forms, on which values of Hermite constants are reached for 6≤𝑛≤8 Trudy Mat. Inst. Steklov. 1980

[32] Watson, G. L. The number of minimum points of a positive quadratic form Dissertationes Math. (Rozprawy Mat.) 1971 42

[33] Ziegler, Günter M. Lectures on polytopes 1995

[34] Zong, Chuanming Sphere packings 1999

Cité par Sources :